Papers
Topics
Authors
Recent
Search
2000 character limit reached

CoLafier: Collaborative Noisy Label Purifier With Local Intrinsic Dimensionality Guidance

Published 10 Jan 2024 in cs.LG and cs.AI | (2401.05458v1)

Abstract: Deep neural networks (DNNs) have advanced many machine learning tasks, but their performance is often harmed by noisy labels in real-world data. Addressing this, we introduce CoLafier, a novel approach that uses Local Intrinsic Dimensionality (LID) for learning with noisy labels. CoLafier consists of two subnets: LID-dis and LID-gen. LID-dis is a specialized classifier. Trained with our uniquely crafted scheme, LID-dis consumes both a sample's features and its label to predict the label - which allows it to produce an enhanced internal representation. We observe that LID scores computed from this representation effectively distinguish between correct and incorrect labels across various noise scenarios. In contrast to LID-dis, LID-gen, functioning as a regular classifier, operates solely on the sample's features. During training, CoLafier utilizes two augmented views per instance to feed both subnets. CoLafier considers the LID scores from the two views as produced by LID-dis to assign weights in an adapted loss function for both subnets. Concurrently, LID-gen, serving as classifier, suggests pseudo-labels. LID-dis then processes these pseudo-labels along with two views to derive LID scores. Finally, these LID scores along with the differences in predictions from the two subnets guide the label update decisions. This dual-view and dual-subnet approach enhances the overall reliability of the framework. Upon completion of the training, we deploy the LID-gen subnet of CoLafier as the final classification model. CoLafier demonstrates improved prediction accuracy, surpassing existing methods, particularly under severe label noise. For more details, see the code at https://github.com/zdy93/CoLafier.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.