Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Chaos and quantization of the three-particle generic Fermi-Pasta-Ulam-Tsingou model I: Density of states and spectral statistics (2401.05188v1)

Published 10 Jan 2024 in cond-mat.stat-mech and quant-ph

Abstract: We study the mixed-type classical dynamics of the three-particle Fermi-Pasta-Ulam-Tsingou (FPUT) model in relationship with its quantum counterpart, and present new results on aspects of quantum chaos in this system. First we derive for the general N-particle FPUT system the transformation to the normal mode representation. Then we specialize to the three-particle FPUT case, and derive analytically the semiclassical energy density of states, and its derivatives in which different singularies are determined, using the Thomas-Fermi rule. The result perfectly agrees with the numerical energy density from the Krylov subspace method, as well as with the energy density obtained by the method of quantum typicality. Here, in paper I, we concentrate on the energy level statistics (level spacing and spacing ratios), in all classical dynamical regimes of interest: the almost entirely regular, the entirely chaotic, and the mixed-type regimes. We clearly confirm, correspondingly, the Poissonian statistics, the GOE statistics, and the Berry-Robnik-Brody (BRB) statistics in the mixed-type regime. It is found that the BRB level spacing distribution perfectly fits the numerical data. The extracted quantum Berry-Robnik parameter is found to agree with the classical value within better than one percent. We discuss the role of localization of chaotic eigenstates, and its appearances, in relation to the classical phase space structure (Poincar\'e and SALI plots), whose details will be presented in paper II, where the structure and the statistical properties of the Husimi functions in the quantum phase space will be studied.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. T. Dauxois, arXiv preprint arXiv:0801.1590  (2008).
  2. S. Lepri, R. Livi, and S. Ruffo, arXiv preprint arXiv:2311.09769  (2023).
  3. V. I. Arnol’d, Russian Mathematical Surveys 18, 85 (1963).
  4. J. Moser, Stable and random motions in dynamical systems: With special emphasis on celestial mechanics, Vol. 1 (Princeton university press, 2001).
  5. J. Ford, Physics Reports 213, 271 (1992).
  6. G. Berman and F. Izrailev, Chaos: An Interdisciplinary Journal of Nonlinear Science 15, 015104 (2005).
  7. G. Gallavotti, The Fermi-Pasta-Ulam problem: a status report, Vol. 728 (Springer, 2007).
  8. R. A. Horn and C. R. Johnson, Matrix analysis (Cambridge university press, 2012).
  9. E. Hairer, G. Wanner, and S. P. Nørsett, Solving Ordinary Differential Equations I: Nonstiff Problems , 355 (1993).
  10. M. Toda, Physics Letters A 48, 335 (1974).
  11. T. Bountis and H. Skokos, Complex hamiltonian dynamics, Vol. 10 (Springer Science & Business Media, 2012).
  12. H.-D. Meyer, The Journal of chemical physics 84, 3147 (1986).
  13. B. Batistić and M. Robnik, Journal of Physics A: Mathematical and Theoretical 43, 215101 (2010).
  14. Y. Weissman and J. Jortner, The Journal of Chemical Physics 77, 1469 (1982).
  15. T. Brandes, Physical Review E 88, 032133 (2013).
  16. M. Bastarrachea-Magnani, S. Lerma-Hernández, and J. Hirsch, Physical Review A 89, 032101 (2014).
  17. A. Hams and H. De Raedt, Physical Review E 62, 4365 (2000).
  18. C. Bartsch and J. Gemmer, Physical review letters 102, 110403 (2009).
  19. T. A. Elsayed and B. V. Fine, Physical Review Letters 110, 070404 (2013).
  20. M. C. Gutzwiller, Journal of Mathematical Physics 12, 343 (1971).
  21. M. V. Berry and M. Tabor, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 349, 101 (1976).
  22. H. De Raedt and K. Michielsen, arXiv preprint quant-ph/0406210  (2004).
  23. Y. Saad, Mathematics of computation 37, 105 (1981).
  24. Y. Saad, Iterative methods for sparse linear systems (SIAM, 2003).
  25. F. Leyvraz, C. Schmit, and T. Seligman, Journal of Physics A: Mathematical and General 29, L575 (1996).
  26. F. Haake, S. Gnutzmann, and M. Kuś, Quantum signatures of chaos, 4th ed. (Springer Cham, 2018).
  27. H. Yan and M. Robnik, to be submitted.
  28. M. V. Berry and M. Robnik, Journal of Physics A: Mathematical and General 17, 2413 (1984).
  29. B. Batistić and M. Robnik, Journal of Physics A: Mathematical and Theoretical 46, 315102 (2013a).
  30. B. Batistić and M. Robnik, Physical Review E 88, 052913 (2013b).
  31. T. Prosen and M. Robnik, Journal of Physics A: Mathematical and General 26, 2371 (1993).
  32. T. Prosen and M. Robnik, Journal of Physics A: Mathematical and General 27, 8059 (1994).
  33. P. Sierant, M. Lewenstein, and J. Zakrzewski, Physical Review Letters 125, 156601 (2020).
  34. J. D. Louck and W. H. Shaffer, Journal of Molecular Spectroscopy 4, 285 (1960).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube