Papers
Topics
Authors
Recent
Search
2000 character limit reached

Mixture of multilayer stochastic block models for multiview clustering

Published 9 Jan 2024 in cs.LG, math.ST, stat.ML, and stat.TH | (2401.04682v1)

Abstract: In this work, we propose an original method for aggregating multiple clustering coming from different sources of information. Each partition is encoded by a co-membership matrix between observations. Our approach uses a mixture of multilayer Stochastic Block Models (SBM) to group co-membership matrices with similar information into components and to partition observations into different clusters, taking into account their specificities within the components. The identifiability of the model parameters is established and a variational Bayesian EM algorithm is proposed for the estimation of these parameters. The Bayesian framework allows for selecting an optimal number of clusters and components. The proposed approach is compared using synthetic data with consensus clustering and tensor-based algorithms for community detection in large-scale complex networks. Finally, the method is utilized to analyze global food trading networks, leading to structures of interest.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.