Analysis of the Taylor-Hood Surface Finite Element Method for the surface Stokes equation
Abstract: We consider the surface Stokes equation on a smooth closed hypersurface in three-dimensional space. For discretization of this problem a generalization of the surface finite element method (SFEM) of Dziuk-Elliott combined with a Hood-Taylor pair of finite element spaces has been used in the literature. We call this method Hood-Taylor-SFEM. This method uses a penalty technique to weakly satisfy the tangentiality constraint. In this paper we present a discretization error analysis of this method resulting in optimal discretization error bounds in an energy norm. We also address linear algebra aspects related to (pre)conditioning of the system matrix.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.