Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inf-sup stability of the trace P2-P1 Taylor-Hood elements for surface PDEs (1909.02990v3)

Published 6 Sep 2019 in math.NA, cs.NA, and math.AP

Abstract: The paper studies a geometrically unfitted finite element method (FEM), known as trace FEM or cut FEM, for the numerical solution of the Stokes system posed on a closed smooth surface. A trace FEM based on standard Taylor-Hood (continuous P2-P1) bulk elements is proposed. A so-called volume normal derivative stabilization, known from the literature on trace FEM, is an essential ingredient of this method. The key result proved in the paper is an inf-sup stability of the trace P2-P1 finite element pair, with the stability constant uniformly bounded with respect to the discretization parameter and the position of the surface in the bulk mesh. Optimal order convergence of a consistent variant of the finite element method follows from this new stability result and interpolation properties of the trace FEM. Properties of the method are illustrated with numerical examples.

Citations (22)

Summary

We haven't generated a summary for this paper yet.