Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Higher order Trace Finite Element Methods for the Surface Stokes Equation (1909.08327v1)

Published 18 Sep 2019 in math.NA and cs.NA

Abstract: In this paper a class of higher order finite element methods for the discretization of surface Stokes equations is studied. These methods are based on an unfitted finite element approach in which standard Taylor-Hood spaces on an underlying bulk mesh are used. For treating the constraint that the velocity must be tangential to the surface a penalty method is applied. Higher order geometry approximation is obtained by using a parametric trace finite element technique, known from the literature on trace finite element methods for scalar surface partial differential equations. Based on theoretical analyses for related problems, specific choices for the parameters in the method are proposed. Results of a systematic numerical study are included in which different variants are compared and convergence properties are illustrated.

Citations (5)

Summary

We haven't generated a summary for this paper yet.