Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Engineering Features to Improve Pass Prediction in Soccer Simulation 2D Games (2401.03410v1)

Published 7 Jan 2024 in cs.AI, cs.LG, and cs.RO

Abstract: Soccer Simulation 2D (SS2D) is a simulation of a real soccer game in two dimensions. In soccer, passing behavior is an essential action for keeping the ball in possession of our team and creating goal opportunities. Similarly, for SS2D, predicting the passing behaviors of both opponents and our teammates helps manage resources and score more goals. Therefore, in this research, we have tried to address the modeling of passing behavior of soccer 2D players using Deep Neural Networks (DNN) and Random Forest (RF). We propose an embedded data extraction module that can record the decision-making of agents in an online format. Afterward, we apply four data sorting techniques for training data preparation. After, we evaluate the trained models' performance playing against 6 top teams of RoboCup 2019 that have distinctive playing strategies. Finally, we examine the importance of different feature groups on the prediction of a passing strategy. All results in each step of this work prove our suggested methodology's effectiveness and improve the performance of the pass prediction in Soccer Simulation 2D games ranging from 5\% (e.g., playing against the same team) to 10\% (e.g., playing against Robocup top teams).

Citations (11)

Summary

We haven't generated a summary for this paper yet.