Papers
Topics
Authors
Recent
Search
2000 character limit reached

A fast offline/online forward solver for stationary transport equation with multiple inflow boundary conditions and varying coefficients

Published 6 Jan 2024 in math.NA and cs.NA | (2401.03147v1)

Abstract: It is of great interest to solve the inverse problem of stationary radiative transport equation (RTE) in optical tomography. The standard way is to formulate the inverse problem into an optimization problem, but the bottleneck is that one has to solve the forward problem repeatedly, which is time-consuming. Due to the optical property of biological tissue, in real applications, optical thin and thick regions coexist and are adjacent to each other, and the geometry can be complex. To use coarse meshes and save the computational cost, the forward solver has to be asymptotic preserving across the interface (APAL). In this paper, we propose an offline/online solver for RTE. The cost at the offline stage is comparable to classical methods, while the cost at the online stage is much lower. Two cases are considered. One is to solve the RTE with fixed scattering and absorption cross sections while the boundary conditions vary; the other is when cross sections vary in a small domain and the boundary conditions change many times. The solver can be decomposed into offline/online stages in these two cases. One only needs to calculate the offline stage once and update the online stage when the parameters vary. Our proposed solver is much cheaper when one needs to solve RTE with multiple right-hand sides or when the cross sections vary in a small domain, thus can accelerate the speed of solving inverse RTE problems. We illustrate the online/offline decomposition based on the Tailored Finite Point Method (TFPM), which is APAL on general quadrilateral meshes.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.