Heterotic Orbifold Models (2401.03125v1)
Abstract: We review efforts in string model building, focusing on the heterotic orbifold compactifications. We survey how one can, starting from an explicit string theory, obtain models which resemble Nature. These models exhibit the standard model gauge group, three generations of standard model matter and an appropriate Higgs sector. Unlike many unified models, these models do not suffer from problems such as doublet-triplet splitting, too rapid proton decay and the $\mu$ problem. Realistic patterns of fermion masses emerge, which are partly explained by flavor symmetries, including their modular variants. We comment on challenges and open questions.
- J. C. Pati and A. Salam, “Lepton Number as the Fourth Color,” Phys. Rev. D 10 (1974) 275–289. [Erratum: Phys.Rev.D 11, 703–703 (1975)].
- P. Fayet and J. Iliopoulos, “Spontaneously Broken Supergauge Symmetries and Goldstone Spinors,” Phys. Lett. B 51 (1974) 461–464.
- M. B. Green and J. H. Schwarz, “Anomaly Cancellation in Supersymmetric D=10 Gauge Theory and Superstring Theory,” Phys. Lett. B 149 (1984) 117–122.
- D. I. Olive, “Relations between grand unified and monopole theories,”. Invited talk given at Study Conf. on Unification of Fundamental Interactions II, Erice, Italy, Oct 6-14, 1981.
- P. Candelas, G. T. Horowitz, A. Strominger, and E. Witten, “Vacuum Configurations for Superstrings,” Nucl. Phys. B 258 (1985) 46–74.
- L. J. Dixon, J. A. Harvey, C. Vafa, and E. Witten, “Strings on Orbifolds,” Nucl. Phys. B 261 (1985) 678–686.
- L. J. Dixon, J. A. Harvey, C. Vafa, and E. Witten, “Strings on Orbifolds. 2.,” Nucl. Phys. B 274 (1986) 285–314.
- M. Blaszczyk, S. Groot Nibbelink, F. Ruehle, M. Trapletti, and P. K. S. Vaudrevange, “Heterotic MSSM on a Resolved Orbifold,” JHEP 09 (2010) 065, arXiv:1007.0203 [hep-th].
- L. E. Ibáñez and A. M. Uranga, String theory and particle physics: An introduction to string phenomenology. Cambridge University Press, 2, 2012.
- P. Langacker, The Standard Model and Beyond. Taylor & Francis, 2017.
- D. Baumann, Cosmology. Cambridge University Press, 7, 2022.
- P. Langacker and G. Steigman, “Requiem for an FCHAMP? Fractionally CHArged, Massive Particle,” Phys. Rev. D 84 (2011) 065040, arXiv:1107.3131 [hep-ph].
- J. Halverson and P. Langacker, “TASI Lectures on Remnants from the String Landscape,” PoS TASI2017 (2018) 019, arXiv:1801.03503 [hep-th].
- S. P. Martin, “A Supersymmetry primer,” Adv. Ser. Direct. High Energy Phys. 18 (1998) 1–98, arXiv:hep-ph/9709356.
- J. E. Kim and H. P. Nilles, “The mu Problem and the Strong CP Problem,” Phys. Lett. B 138 (1984) 150–154.
- G. F. Giudice and A. Masiero, “A Natural Solution to the mu Problem in Supergravity Theories,” Phys. Lett. B 206 (1988) 480–484.
- S. Dimopoulos, S. Raby, and F. Wilczek, “Supersymmetry and the Scale of Unification,” Phys. Rev. D 24 (1981) 1681–1683.
- Springer, 2017.
- J. D. Breit, B. A. Ovrut, and G. C. Segre, “E(6) Symmetry Breaking in the Superstring Theory,” Phys. Lett. B 158 (1985) 33.
- C. Angelantonj and I. Florakis, “Introduction to String Theory,”. To appear as chapter of the Handbook of Quantum Gravity.
- D. J. Gross, J. A. Harvey, E. J. Martinec, and R. Rohm, “The Heterotic String,” Phys. Rev. Lett. 54 (1985) 502–505.
- R. Donagi and K. Wendland, “On orbifolds and free fermion constructions,” J. Geom. Phys. 59 (2009) 942–968, arXiv:0809.0330 [hep-th].
- P. Athanasopoulos, A. E. Faraggi, S. Groot Nibbelink, and V. M. Mehta, “Heterotic free fermionic and symmetric toroidal orbifold models,” JHEP 04 (2016) 038, arXiv:1602.03082 [hep-th].
- K. S. Narain, M. H. Sarmadi, and C. Vafa, “Asymmetric Orbifolds,” Nucl. Phys. B 288 (1987) 551.
- L. E. Ibáñez, J. Mas, H.-P. Nilles, and F. Quevedo, “Heterotic Strings in Symmetric and Asymmetric Orbifold Backgrounds,” Nucl. Phys. B 301 (1988) 157–196.
- D. Gepner, “New Conformal Field Theories Associated with Lie Algebras and their Partition Functions,” Nucl. Phys. B 290 (1987) 10–24.
- D. Gepner, “Exactly Solvable String Compactifications on Manifolds of SU(N) Holonomy,” Phys. Lett. B 199 (1987) 380–388.
- M. Fischer, M. Ratz, J. Torrado, and P. K. S. Vaudrevange, “Classification of symmetric toroidal orbifolds,” JHEP 01 (2013) 084, arXiv:1209.3906 [hep-th].
- J. Giedt, “Spectra in standard - like Z(3) orbifold models,” Annals Phys. 297 (2002) 67–126, arXiv:hep-th/0108244.
- F. Plöger, S. Ramos-Sánchez, M. Ratz, and P. K. S. Vaudrevange, “Mirage Torsion,” JHEP 04 (2007) 063, arXiv:hep-th/0702176.
- C. Vafa, “Modular Invariance and Discrete Torsion on Orbifolds,” Nucl. Phys. B 273 (1986) 592–606.
- D. Bailin and A. Love, “Orbifold compactifications of string theory,” Phys. Rept. 315 (1999) 285–408.
- M. Fischer, S. Ramos-Sánchez, and P. K. S. Vaudrevange, “Heterotic non-Abelian orbifolds,” JHEP 07 (2013) 080, arXiv:1304.7742 [hep-th].
- A. Hebecker and M. Trapletti, “Gauge unification in highly anisotropic string compactifications,” Nucl. Phys. B 713 (2005) 173–203, arXiv:hep-th/0411131.
- V. Bouchard and R. Donagi, “An SU(5) heterotic standard model,” Phys. Lett. B 633 (2006) 783–791, arXiv:hep-th/0512149.
- S. J. H. Konopka, “Non Abelian orbifold compactifications of the heterotic string,” JHEP 07 (2013) 023, arXiv:1210.5040 [hep-th].
- H. P. Nilles and P. K. S. Vaudrevange, “Geography of Fields in Extra Dimensions: String Theory Lessons for Particle Physics,” Mod. Phys. Lett. A 30 no. 10, (2015) 1530008, arXiv:1403.1597 [hep-th].
- Y. Olguín-Trejo, R. Pérez-Martínez, and S. Ramos-Sánchez, “Charting the flavor landscape of MSSM-like Abelian heterotic orbifolds,” Phys. Rev. D 98 no. 10, (2018) 106020, arXiv:1808.06622 [hep-th].
- E. Parr and P. K. S. Vaudrevange, “Contrast data mining for the MSSM from strings,” Nucl. Phys. B 952 (2020) 114922, arXiv:1910.13473 [hep-th].
- E. Witten, “Strong coupling expansion of Calabi-Yau compactification,” Nucl. Phys. B 471 (1996) 135–158, arXiv:hep-th/9602070.
- K. R. Dienes, “String theory and the path to unification: A Review of recent developments,” Phys. Rept. 287 (1997) 447–525, arXiv:hep-th/9602045.
- M. Quiros, “New ideas in symmetry breaking,” in Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2002): Particle Physics and Cosmology: The Quest for Physics Beyond the Standard Model(s), pp. 549–601. 2, 2003. arXiv:hep-ph/0302189.
- H. P. Nilles, S. Ramos-Sánchez, P. K. S. Vaudrevange, and A. Wingerter, “The Orbifolder: A Tool to study the Low Energy Effective Theory of Heterotic Orbifolds,” Comput. Phys. Commun. 183 (2012) 1363–1380, arXiv:1110.5229 [hep-th].
- L. McAllister and F. Quevedo, “Moduli Stabilization in String Theory,” arXiv:2310.20559 [hep-th]. To appear as chapter of the Handbook of Quantum Gravity.
- L. J. Dixon, V. Kaplunovsky, and J. Louis, “On Effective Field Theories Describing (2,2) Vacua of the Heterotic String,” Nucl. Phys. B 329 (1990) 27–82.
- M.-C. Chen, M. Fallbacher, K. T. Mahanthappa, M. Ratz, and A. Trautner, “CP Violation from Finite Groups,” Nucl. Phys. B 883 (2014) 267–305, arXiv:1402.0507 [hep-ph].
- A. Baur, H. P. Nilles, A. Trautner, and P. K. S. Vaudrevange, “Unification of Flavor, CP, and Modular Symmetries,” Phys. Lett. B 795 (2019) 7–14, arXiv:1901.03251 [hep-th].
- A. Baur, H. P. Nilles, A. Trautner, and P. K. S. Vaudrevange, “A String Theory of Flavor and 𝒞𝒫𝒞𝒫\mathscr{CP}script_C script_P,” Nucl. Phys. B 947 (2019) 114737, arXiv:1908.00805 [hep-th].
- K. S. Narain, “New Heterotic String Theories in Uncompactified Dimensions <<< 10,” Phys. Lett. B 169 (1986) 41–46.
- S. Groot Nibbelink and P. K. S. Vaudrevange, “T-duality orbifolds of heterotic Narain compactifications,” JHEP 04 (2017) 030, arXiv:1703.05323 [hep-th].
- G. Senjanovic and R. N. Mohapatra, “Exact Left-Right Symmetry and Spontaneous Violation of Parity,” Phys. Rev. D 12 (1975) 1502.
- S. M. Barr, “A New Symmetry Breaking Pattern for SO(10) and Proton Decay,” Phys. Lett. B 112 (1982) 219–222.
- A. Font, L. E. Ibanez, H. P. Nilles, and F. Quevedo, “Degenerate Orbifolds,” Nucl. Phys. B 307 (1988) 109–129. [Erratum: Nucl.Phys.B 310, 764–764 (1988)].
- F. Buccella, J. P. Derendinger, S. Ferrara, and C. A. Savoy, “Patterns of Symmetry Breaking in Supersymmetric Gauge Theories,” Phys. Lett. B115 (1982) 375.
- G. Cleaver, M. Cvetic, J. R. Espinosa, L. L. Everett, and P. Langacker, “Intermediate scales, mu parameter, and fermion masses from string models,” Phys. Rev. D 57 (1998) 2701–2715, arXiv:hep-ph/9705391.
- M. Cvetic, L. L. Everett, and J. Wang, “Units and numerical values of the effective couplings in perturbative heterotic string vacua,” Phys. Rev. D 59 (1999) 107901, arXiv:hep-ph/9808321.
- R. Kappl, M. Ratz, and C. Staudt, “The Hilbert basis method for D-flat directions and the superpotential,” JHEP 10 (2011) 027, arXiv:1108.2154 [hep-th].
- P. Binetruy and P. Ramond, “Yukawa textures and anomalies,” Phys. Lett. B 350 (1995) 49–57, arXiv:hep-ph/9412385.
- J. P. Derendinger, L. E. Ibáñez, and H. P. Nilles, “On the Low-Energy d = 4, N=1 Supergravity Theory Extracted from the d = 10, N=1 Superstring,” Phys. Lett. B 155 (1985) 65–70.
- K. A. Intriligator, N. Seiberg, and D. Shih, “Dynamical SUSY breaking in meta-stable vacua,” JHEP 04 (2006) 021, arXiv:hep-th/0602239.
- B. Petersen, M. Ratz, and R. Schieren, “Patterns of remnant discrete symmetries,” JHEP 08 (2009) 111, arXiv:0907.4049 [hep-ph].
- H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada, and M. Tanimoto, “Non-Abelian Discrete Symmetries in Particle Physics,” Prog. Theor. Phys. Suppl. 183 (2010) 1–163, arXiv:1003.3552 [hep-th].
- S. Ramos-Sánchez and P. K. S. Vaudrevange, “Note on the space group selection rule for closed strings on orbifolds,” JHEP 01 (2019) 055, arXiv:1811.00580 [hep-th].
- F. Beye, T. Kobayashi, and S. Kuwakino, “Gauge Origin of Discrete Flavor Symmetries in Heterotic Orbifolds,” Phys. Lett. B 736 (2014) 433–437, arXiv:1406.4660 [hep-th].
- G. Lopes Cardoso, D. Lüst, and T. Mohaupt, “Moduli spaces and target space duality symmetries in (0,2) Z(N) orbifold theories with continuous Wilson lines,” Nucl. Phys. B 432 (1994) 68–108, arXiv:hep-th/9405002.
- S. Ferrara, D. Lüst, A. D. Shapere, and S. Theisen, “Modular Invariance in Supersymmetric Field Theories,” Phys. Lett. B 225 (1989) 363.
- L. J. Dixon, D. Friedan, E. J. Martinec, and S. H. Shenker, “The Conformal Field Theory of Orbifolds,” Nucl. Phys. B 282 (1987) 13–73.
- J. Lauer, J. Mas, and H. P. Nilles, “Duality and the Role of Nonperturbative Effects on the World Sheet,” Phys. Lett. B 226 (1989) 251–256.
- J. Lauer, J. Mas, and H. P. Nilles, “Twisted sector representations of discrete background symmetries for two-dimensional orbifolds,” Nucl. Phys. B 351 (1991) 353–424.
- L. E. Ibáñez and D. Lüst, “Duality anomaly cancellation, minimal string unification and the effective low-energy Lagrangian of 4-D strings,” Nucl. Phys. B 382 (1992) 305–361, arXiv:hep-th/9202046.
- H. P. Nilles, S. Ramos–Sánchez, and P. K. S. Vaudrevange, “Eclectic flavor scheme from ten-dimensional string theory - II detailed technical analysis,” Nucl. Phys. B 966 (2021) 115367, arXiv:2010.13798 [hep-th].
- H. P. Nilles, M. Ratz, A. Trautner, and P. K. S. Vaudrevange, “𝒞𝒫𝒞𝒫\mathcal{CP}caligraphic_C caligraphic_P violation from string theory,” Phys. Lett. B 786 (2018) 283–287, arXiv:1808.07060 [hep-th].
- S. Biermann, A. Mütter, E. Parr, M. Ratz, and P. K. S. Vaudrevange, “Discrete remnants of orbifolding,” Phys. Rev. D 100 no. 6, (2019) 066030, arXiv:1906.10276 [hep-ph].
- R. Kappl, H. P. Nilles, S. Ramos-Sánchez, M. Ratz, K. Schmidt-Hoberg, and P. K. S. Vaudrevange, “Large hierarchies from approximate R symmetries,” Phys. Rev. Lett. 102 (2009) 121602, arXiv:0812.2120 [hep-th].
- K.-S. Choi, H. P. Nilles, S. Ramos-Sánchez, and P. K. S. Vaudrevange, “Accions,” Phys. Lett. B 675 (2009) 381–386, arXiv:0902.3070 [hep-th].
- M. Dine, A. E. Nelson, Y. Nir, and Y. Shirman, “New tools for low-energy dynamical supersymmetry breaking,” Phys. Rev. D 53 (1996) 2658–2669, arXiv:hep-ph/9507378.
- S. Ramos-Sánchez, M. Ratz, Y. Shirman, S. Shukla, and M. Waterbury, “Generation flow in field theory and strings,” JHEP 10 (2021) 144, arXiv:2109.01681 [hep-th].
- N. Sakai and T. Yanagida, “Proton Decay in a Class of Supersymmetric Grand Unified Models,” Nucl. Phys. B 197 (1982) 533.
- G. Altarelli and F. Feruglio, “SU(5) grand unification in extra dimensions and proton decay,” Phys. Lett. B 511 (2001) 257–264, arXiv:hep-ph/0102301.
- R. Kappl, B. Petersen, S. Raby, M. Ratz, R. Schieren, and P. K. S. Vaudrevange, “String-Derived MSSM Vacua with Residual R Symmetries,” Nucl. Phys. B 847 (2011) 325–349, arXiv:1012.4574 [hep-th].
- I. Antoniadis, E. Gava, K. S. Narain, and T. R. Taylor, “Effective mu term in superstring theory,” Nucl. Phys. B 432 (1994) 187–204, arXiv:hep-th/9405024.
- L. Alvarez-Gaumé, P. H. Ginsparg, G. W. Moore, and C. Vafa, “An O(16) x O(16) Heterotic String,” Phys. Lett. B 171 (1986) 155–162.
- L. J. Dixon and J. A. Harvey, “String Theories in Ten-Dimensions Without Space-Time Supersymmetry,” Nucl. Phys. B 274 (1986) 93–105.
- S. Groot Nibbelink, O. Loukas, A. Mütter, E. Parr, and P. K. S. Vaudrevange, “Tension Between a Vanishing Cosmological Constant and Non-Supersymmetric Heterotic Orbifolds,” Fortsch. Phys. 68 no. 7, (2020) 2000044, arXiv:1710.09237 [hep-th].
- M. Blaszczyk, S. Groot Nibbelink, O. Loukas, and S. Ramos-Sánchez, “Non-supersymmetric heterotic model building,” JHEP 10 (2014) 119, arXiv:1407.6362 [hep-th].
- S. Abel, K. R. Dienes, and E. Mavroudi, “Towards a nonsupersymmetric string phenomenology,” Phys. Rev. D 91 no. 12, (2015) 126014, arXiv:1502.03087 [hep-th].
- S. Abel, K. R. Dienes, and E. Mavroudi, “GUT precursors and entwined SUSY: The phenomenology of stable nonsupersymmetric strings,” Phys. Rev. D 97 no. 12, (2018) 126017, arXiv:1712.06894 [hep-ph].
- R. Pérez-Martínez, S. Ramos-Sánchez, and P. K. S. Vaudrevange, “Landscape of promising nonsupersymmetric string models,” Phys. Rev. D 104 no. 4, (2021) 046026, arXiv:2105.03460 [hep-th].
- S. Groot Nibbelink, O. Loukas, F. Ruehle, and P. K. S. Vaudrevange, “Infinite number of MSSMs from heterotic line bundles?,” Phys. Rev. D 92 no. 4, (2015) 046002, arXiv:1506.00879 [hep-th].
- F. Ruehle, “Data science applications to string theory,” Phys. Rept. 839 (2020) 1–117.
- E. Silverstein and E. Witten, “Criteria for conformal invariance of (0,2) models,” Nucl. Phys. B 444 (1995) 161–190, arXiv:hep-th/9503212.
- L. B. Anderson, J. Gray, M. Larfors, and M. Magill, “Vanishing Yukawa Couplings and the Geometry of String Theory Models,” arXiv:2201.10357 [hep-th].
- S. Groot Nibbelink, J. Held, F. Ruehle, M. Trapletti, and P. K. S. Vaudrevange, “Heterotic Z(6-II) MSSM Orbifolds in Blowup,” JHEP 03 (2009) 005, arXiv:0901.3059 [hep-th].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.