Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Evolution of urban areas and land surface temperature (2401.03005v1)

Published 5 Jan 2024 in physics.soc-ph and cs.CV

Abstract: With the global population on the rise, our cities have been expanding to accommodate the growing number of people. The expansion of cities generally leads to the engulfment of peripheral areas. However, such expansion of urban areas is likely to cause increment in areas with increased land surface temperature (LST). By considering each summer as a data point, we form LST multi-year time-series and cluster it to obtain spatio-temporal pattern. We observe several interesting phenomena from these patterns, e.g., some clusters show reasonable similarity to the built-up area, whereas the locations with high temporal variation are seen more in the peripheral areas. Furthermore, the LST center of mass shifts over the years for cities with development activities tilted towards a direction. We conduct the above-mentioned studies for three different cities in three different continents.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. D. Carvalho, H. Martins, M. Marta-Almeida, A. Rocha, and C. Borrego, “Urban resilience to future urban heat waves under a climate change scenario: A case study for porto urban area (portugal),” Urban Climate, vol. 19, pp. 1–27, 2017.
  2. B. Halder, J. Bandyopadhyay, and P. Banik, “Evaluation of the climate change impact on urban heat island based on land surface temperature and geospatial indicators,” International Journal of Environmental Research, vol. 15, pp. 819–835, 2021.
  3. I. D. Stewart and T. R. Oke, “Local climate zones for urban temperature studies,” Bulletin of the American Meteorological Society, vol. 93, no. 12, pp. 1879–1900, 2012.
  4. M. House and M. Santamouris, “Advances in building energy research heat island research in europe: The state of heat island research in europe: The state of the art. july 2012,” 2011.
  5. P. Rohini, M. Rajeevan, and A. Srivastava, “On the variability and increasing trends of heat waves over India,” Scientific reports, vol. 6, no. 1, pp. 1–9, 2016.
  6. C. Yoo, J. Im, S. Park, and L. J. Quackenbush, “Estimation of daily maximum and minimum air temperatures in urban landscapes using MODIS time series satellite data,” ISPRS journal of photogrammetry and remote sensing, vol. 137, pp. 149–162, 2018.
  7. A. Rajeshwari and N. Mani, “Estimation of land surface temperature of dindigul district using landsat 8 data,” International Journal of Research in Engineering and Technology, vol. 3, no. 5, pp. 122–126, 2014.
  8. S. Saha, M. Shahzad, L. Mou, Q. Song, and X. X. Zhu, “Unsupervised single-scene semantic segmentation for earth observation,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–11, 2022.
  9. X. Pan, J. Xu, J. Zhao, and X. Li, “Hierarchical object-focused and grid-based deep unsupervised segmentation method for high-resolution remote sensing images,” Remote Sensing, vol. 14, no. 22, p. 5768, 2022.
  10. P. A. Mirzaei, “Recent challenges in modeling of urban heat island,” Sustainable cities and society, vol. 19, pp. 200–206, 2015.
  11. R. Kaur and P. Pandey, “Spatial trends of surface urban heat island in bathinda: a semiarid city of northwestern India,” International Journal of Environmental Science and Technology, pp. 1–22, 2022.
  12. D. H. García, “Analysis of urban heat island and heat waves using sentinel-3 images: a study of andalusian cities in spain,” Earth Systems and Environment, pp. 1–21, 2022.
  13. T. N. Phan and M. Kappas, “Application of MODIS land surface temperature data: a systematic literature review and analysis,” Journal of Applied Remote Sensing, vol. 12, no. 4, pp. 041501–041501, 2018.
  14. B. Halder, A. Karimi, P. Mohammad, J. Bandyopadhyay, R. D. Brown, and Z. M. Yaseen, “Investigating the relationship between land alteration and the urban heat island of seville city using multi-temporal Landsat data,” Theoretical and Applied Climatology, vol. 150, no. 1-2, pp. 613–635, 2022.
  15. L. Chunmei and M. Qingxiang, “Urban expansion and its impact on urban heat island intensity: a case study of chengdu city, china,” in 2022 29th International Conference on Geoinformatics, pp. 1–6, IEEE, 2022.
  16. X. Huang, L. Lu, X. Peng, and F. Meng, “Detecting spatio-temporal patterns of urban heat islands from a perspective of urban expansion: a case study of hangzhou, China,” in 2022 10th International Conference on Agro-geoinformatics (Agro-Geoinformatics), pp. 1–5, IEEE, 2022.
  17. P. Sismanidis, I. Keramitsoglou, C. T. Kiranoudis, and B. Bechtel, “Assessing the capability of a downscaled urban land surface temperature time series to reproduce the spatiotemporal features of the original data,” Remote Sensing, vol. 8, no. 4, p. 274, 2016.
  18. Z. Wan et al., “MODIS land surface temperature products users’ guide,” Institute for Computational Earth System Science, University of California: Santa Barbara, CA, USA, vol. 805, 2006.
  19. Z. Wan, “New refinements and validation of the MODIS land-surface temperature/emissivity products,” Remote sensing of Environment, vol. 112, no. 1, pp. 59–74, 2008.
  20. N. Otsu, “A threshold selection method from gray-level histograms,” IEEE transactions on systems, man, and cybernetics, vol. 9, no. 1, pp. 62–66, 1979.
  21. Z. Yu, L. Chen, L. Li, T. Zhang, L. Yuan, R. Liu, Z. Wang, J. Zang, and S. Shi, “Spatiotemporal characterization of the urban expansion patterns in the Yangtze river delta region,” Remote Sensing, vol. 13, no. 21, p. 4484, 2021.
  22. G. Kuc and J. Chormański, “Sentinel-2 imagery for mapping and monitoring imperviousness in urban areas,” The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 42, pp. 43–47, 2019.
  23. J.-F. Bastin, E. Clark, T. Elliott, S. Hart, J. Van Den Hoogen, I. Hordijk, H. Ma, S. Majumder, G. Manoli, J. Maschler, et al., “Understanding climate change from a global analysis of city analogues,” PloS one, vol. 14, no. 7, p. e0217592, 2019.
  24. C.-A. Diaconu, S. Saha, S. Günnemann, and X. X. Zhu, “Understanding the role of weather data for earth surface forecasting using a convlstm-based model,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1362–1371, 2022.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube