Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

iPolicy: Incremental Policy Algorithms for Feedback Motion Planning (2401.02883v1)

Published 5 Jan 2024 in cs.RO, cs.SY, and eess.SY

Abstract: This paper presents policy-based motion planning for robotic systems. The motion planning literature has been mostly focused on open-loop trajectory planning which is followed by tracking online. In contrast, we solve the problem of path planning and controller synthesis simultaneously by solving the related feedback control problem. We present a novel incremental policy (iPolicy) algorithm for motion planning, which integrates sampling-based methods and set-valued optimal control methods to compute feedback controllers for the robotic system. In particular, we use sampling to incrementally construct the state space of the system. Asynchronous value iterations are performed on the sampled state space to synthesize the incremental policy feedback controller. We show the convergence of the estimates to the optimal value function in continuous state space. Numerical results with various different dynamical systems (including nonholonomic systems) verify the optimality and effectiveness of iPolicy.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. J. Reif, “Complexity of the mover’s problem and generalizations,” in Proceedings of the 20th Annual IEEE Conference on Foundations of Computer Science, pp. 421–427, 1979.
  2. S. M. LaValle, Planning algorithms. Cambridge university press, 2006.
  3. S. LaValle, “Motion planning,” Robotics Automation Magazine, IEEE, vol. 18, pp. 79–89, March 2011.
  4. S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,” The International Journal of Robotics Research, vol. 20, no. 5, pp. 378–400, 2001.
  5. S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” The International Journal of Robotics Research, vol. 30, no. 7, pp. 846–894, 2011.
  6. R. M. Murray and S. S. Sastry, “Nonholonomic motion planning: Steering using sinusoids,” Automatic Control, IEEE Transactions on, vol. 38, no. 5, pp. 700–716, 1993.
  7. Springer, 1998.
  8. Y. Wang, D. K. Jha, and Y. Akemi, “A two-stage RRT path planner for automated parking,” in 2017 13th IEEE Conference on Automation Science and Engineering (CASE), pp. 496–502, IEEE, 2017.
  9. E. Schmerling, L. Janson, and M. Pavone, “Optimal sampling-based motion planning under differential constraints: the driftless case,” in 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 2368–2375, IEEE, 2015.
  10. A. Perez, R. Platt, G. Konidaris, L. Kaelbling, and T. Lozano-Perez, “LQR-RRT*: Optimal sampling-based motion planning with automatically derived extension heuristics,” in Robotics and Automation (ICRA), 2012 IEEE International Conference on, pp. 2537–2542, IEEE, 2012.
  11. D. J. Webb and J. van den Berg, “Kinodynamic RRT*: Asymptotically optimal motion planning for robots with linear dynamics,” in Robotics and Automation (ICRA), 2013 IEEE International Conference on, pp. 5054–5061, IEEE, 2013.
  12. S. Karaman and E. Frazzoli, “Sampling-based optimal motion planning for non-holonomic dynamical systems,” in Robotics and Automation (ICRA), 2013 IEEE International Conference on, pp. 5041–5047, IEEE, 2013.
  13. K. Hauser, “Lazy collision checking in asymptotically-optimal motion planning,” in 2015 IEEE international conference on robotics and automation (ICRA), pp. 2951–2957, IEEE, 2015.
  14. H. Peng, F. Li, J. Liu, and Z. Ju, “A symplectic instantaneous optimal control for robot trajectory tracking with differential-algebraic equation models,” IEEE Transactions on Industrial Electronics, vol. 67, no. 5, pp. 3819–3829, 2020.
  15. P. Cardaliaguet, M. Quincampoix, and P. Saint-Pierre, “Set-valued numerical analysis for optimal control and differential games,” in Stochastic and differential games: theory and numerical methods, pp. 177–247, Birkhäuser Boston Boston, MA, 1999.
  16. M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal, “Stomp: Stochastic trajectory optimization for motion planning,” in 2011 IEEE International Conference on Robotics and Automation, pp. 4569–4574, 2011.
  17. N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp: Gradient optimization techniques for efficient motion planning,” in 2009 IEEE International Conference on Robotics and Automation, pp. 489–494, 2009.
  18. M. Kelly, “An introduction to trajectory optimization: How to do your own direct collocation,” SIAM Review, vol. 59, no. 4, pp. 849–904, 2017.
  19. J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan, S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential convex optimization and convex collision checking,” The International Journal of Robotics Research, vol. 33, no. 9, pp. 1251–1270, 2014.
  20. A. U. Raghunathan, D. K. Jha, and D. Romeres, “PYROBOCOP : Python-based robotic control & optimization package for manipulation and collision avoidance,” CoRR, vol. abs/2106.03220, 2021.
  21. X. Wang, J. Liu, Y. Zhang, B. Shi, D. Jiang, and H. Peng, “A unified symplectic pseudospectral method for motion planning and tracking control of 3d underactuated overhead cranes,” International Journal of Robust and Nonlinear Control, vol. 29, no. 7, pp. 2236–2253, 2019.
  22. Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of complex behaviors through online trajectory optimization,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4906–4913, IEEE, 2012.
  23. K. Zhang, Q. Sun, and Y. Shi, “Trajectory tracking control of autonomous ground vehicles using adaptive learning mpc,” IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 12, pp. 5554–5564, 2021.
  24. J. De Schutter, M. Zanon, and M. Diehl, “Tunempc—a tool for economic tuning of tracking (n) mpc problems,” IEEE Control Systems Letters, vol. 4, no. 4, pp. 910–915, 2020.
  25. A. Majumdar and R. Tedrake, “Funnel libraries for real-time robust feedback motion planning,” The International Journal of Robotics Research, vol. 36, no. 8, pp. 947–982, 2017.
  26. O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” in Autonomous Robot Vehicles, pp. 396–404, Springer, 1986.
  27. J. Borenstein and Y. Koren, “The vector field histogram - fast obstacle avoidance for mobile robots,” IEEE Journal of Robotics and Automation, vol. 7, no. 3, pp. 278–288, 1991.
  28. D. E. Koditschek and E. Rimon, “Robot navigation functions on manifolds with boundary,” Advances in applied mathematics, vol. 11, no. 4, pp. 412–442, 1990.
  29. A. Orthey, C. Chamzas, and L. E. Kavraki, “Sampling-based motion planning: A comparative review,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 7, no. 1, p. null, 2024.
  30. R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts, “Lqr-trees: Feedback motion planning via sums-of-squares verification,” The International Journal of Robotics Research, vol. 29, no. 8, pp. 1038–1052, 2010.
  31. R. Tedrake, “LQR-trees: Feedback motion planning on sparse randomized trees,” in Proceedings of Robotics: Science and Systems, (Seattle, USA), June 2009.
  32. G. J. Maeda, S. P. Singh, and H. Durrant-Whyte, “A tuned approach to feedback motion planning with rrts under model uncertainty,” in Robotics and Automation (ICRA), 2011 IEEE International Conference on, pp. 2288–2294, IEEE, 2011.
  33. V. A. Huynh, S. Karaman, and E. Frazzoli, “An incremental sampling-based algorithm for stochastic optimal control,” in Robotics and Automation (ICRA), 2012 IEEE International Conference on, pp. 2865–2872, IEEE, 2012.
  34. D. K. Jha, M. Zhu, and A. Ray, “Game theoretic controller synthesis for multi-robot motion planning-part II: Policy-based algorithms,” IFAC-PapersOnLine, vol. 48, no. 22, pp. 168–173, 2015.
  35. G. Zhao and M. Zhu, “Pareto optimal multirobot motion planning,” IEEE Transactions on Automatic Control, vol. 66, no. 9, pp. 3984–3999, 2020.
  36. A.-A. Agha-Mohammadi, S. Chakravorty, and N. M. Amato, “Firm: Sampling-based feedback motion-planning under motion uncertainty and imperfect measurements,” The International Journal of Robotics Research, vol. 33, no. 2, pp. 268–304, 2014.
  37. E. Schmerling, L. Janson, and M. Pavone, “Optimal sampling-based motion planning under differential constraints: the driftless case,” arXiv preprint arXiv:1403.2483, 2014.
  38. E. Mueller, M. Zhu, S. Karaman, and E. Frazzoli, “Anytime computation algorithms for approach-evasion differential games,” arXiv preprints, 2013. http://arxiv.org/abs/1308.1174.
  39. S. Levine and P. Abbeel, “Learning neural network policies with guided policy search under unknown dynamics,” in Advances in Neural Information Processing Systems, pp. 1071–1079, 2014.
  40. C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song, “Diffusion policy: Visuomotor policy learning via action diffusion,” arXiv preprint arXiv:2303.04137, 2023.
  41. A. Majumdar, A. A. Ahmadi, and R. Tedrake, “Control design along trajectories with sums of squares programming,” in 2013 IEEE International Conference on Robotics and Automation, pp. 4054–4061, IEEE, 2013.
  42. P. Kolaric, D. K. Jha, A. U. Raghunathan, F. L. Lewis, M. Benosman, D. Romeres, and D. Nikovski, “Local policy optimization for trajectory-centric reinforcement learning,” International Conference on Robotics and Automation (ICRA), 2020. https://arxiv.org/pdf/2001.08092.
  43. Y. Shirai, D. K. Jha, and A. U. Raghunathan, “Covariance steering for uncertain contact-rich systems,” arXiv preprint arXiv:2303.13382, 2023.
  44. Y. Shirai, D. K. Jha, A. U. Raghunathan, and D. Romeres, “Robust pivoting: Exploiting frictional stability using bilevel optimization,” in 2022 International Conference on Robotics and Automation (ICRA), pp. 992–998, 2022.
  45. G. Yang, M. Cai, A. Ahmad, C. Belta, and R. Tron, “Efficient LQR-CBF-RRT*: Safe and optimal motion planning,” arXiv preprint arXiv:2304.00790, 2023.
  46. H. L. Royden and P. Fitzpatrick, Real analysis. Prentice Hall, 4 ed., 2010.

Summary

We haven't generated a summary for this paper yet.