Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Importance sampling-based approximate optimal planning and control (1612.05594v1)

Published 16 Dec 2016 in cs.SY and cs.RO

Abstract: In this paper, we propose a sampling-based planning and optimal control method of nonlinear systems under non-differentiable constraints. Motivated by developing scalable planning algorithms, we consider the optimal motion plan to be a feedback controller that can be approximated by a weighted sum of given bases. Given this approximate optimal control formulation, our main contribution is to introduce importance sampling, specifically, model-reference adaptive search algorithm, to iteratively compute the optimal weight parameters, i.e., the weights corresponding to the optimal policy function approximation given chosen bases. The key idea is to perform the search by iteratively estimating a parametrized distribution which converges to a Dirac's Delta that infinitely peaks on the global optimal weights. Then, using this direct policy search, we incorporated trajectory-based verification to ensure that, for a class of nonlinear systems, the obtained policy is not only optimal but robust to bounded disturbances. The correctness and efficiency of the methods are demonstrated through numerical experiments including linear systems with a nonlinear cost function and motion planning for a Dubins car.

Summary

We haven't generated a summary for this paper yet.