Papers
Topics
Authors
Recent
Search
2000 character limit reached

Global well-posedness and large-time behavior of classical solutions to the Euler-Navier-Stokes system in R^3

Published 5 Jan 2024 in math.AP | (2401.02679v2)

Abstract: In this paper, we study the Cauchy problem of a two-phase flow system consisting of the compressible isothermal Euler equations and the incompressible Navier-Stokes equations coupled through the drag force, which can be formally derived from the Vlasov-Fokker-Planck/incompressible Navier-Stokes equations. When the initial data is a small perturbation around an equilibrium state, we prove the global well-posedness of the classical solutions to this system and show the solutions tends to the equilibrium state as time goes to infinity. In order to resolve the main difficulty arising from the pressure term of the incompressible Navier-Stokes equations, we properly use the Hodge decomposition, spectral analysis, and energy method to obtain the $L2$ time decay rates of the solution when the initial perturbation belongs to $L1$ space. Furthermore, we show that the above time decay rates are optimal.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.