Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mapping of Land Use and Land Cover (LULC) using EuroSAT and Transfer Learning (2401.02424v1)

Published 6 Nov 2023 in cs.CV, cs.AI, and cs.LG

Abstract: As the global population continues to expand, the demand for natural resources increases. Unfortunately, human activities account for 23% of greenhouse gas emissions. On a positive note, remote sensing technologies have emerged as a valuable tool in managing our environment. These technologies allow us to monitor land use, plan urban areas, and drive advancements in areas such as agriculture, climate change mitigation, disaster recovery, and environmental monitoring. Recent advances in AI, computer vision, and earth observation data have enabled unprecedented accuracy in land use mapping. By using transfer learning and fine-tuning with RGB bands, we achieved an impressive 99.19% accuracy in land use analysis. Such findings can be used to inform conservation and urban planning policies.

Citations (1)

Summary

We haven't generated a summary for this paper yet.