Papers
Topics
Authors
Recent
Search
2000 character limit reached

GeoPos: A Minimal Positional Encoding for Enhanced Fine-Grained Details in Image Synthesis Using Convolutional Neural Networks

Published 3 Jan 2024 in cs.CV, cs.AI, and cs.LG | (2401.01951v2)

Abstract: The enduring inability of image generative models to recreate intricate geometric features, such as those present in human hands and fingers has been an ongoing problem in image generation for nearly a decade. While strides have been made by increasing model sizes and diversifying training datasets, this issue remains prevalent across all models, from denoising diffusion models to Generative Adversarial Networks (GAN), pointing to a fundamental shortcoming in the underlying architectures. In this paper, we demonstrate how this problem can be mitigated by augmenting convolution layers geometric capabilities through providing them with a single input channel incorporating the relative n-dimensional Cartesian coordinate system. We show this drastically improves quality of images generated by Diffusion Models, GANs, and Variational AutoEncoders (VAE).

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.