Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Integrated Sensing and Communication with Massive MIMO: A Unified Tensor Approach for Channel and Target Parameter Estimation (2401.01738v1)

Published 3 Jan 2024 in cs.IT, eess.SP, and math.IT

Abstract: Benefitting from the vast spatial degrees of freedom, the amalgamation of integrated sensing and communication (ISAC) and massive multiple-input multiple-output (MIMO) is expected to simultaneously improve spectral and energy efficiencies as well as the sensing capability. However, a large number of antennas deployed in massive MIMO-ISAC raises critical challenges in acquiring both accurate channel state information and target parameter information. To overcome these two challenges with a unified framework, we first analyze their underlying system models and then propose a novel tensor-based approach that addresses both the channel estimation and target sensing problems. Specifically, by parameterizing the high-dimensional communication channel exploiting a small number of physical parameters, we associate the channel state information with the sensing parameters of targets in terms of angular, delay, and Doppler dimensions. Then, we propose a shared training pattern adopting the same time-frequency resources such that both the channel estimation and target parameter estimation can be formulated as a canonical polyadic decomposition problem with a similar mathematical expression. On this basis, we first investigate the uniqueness condition of the tensor factorization and the maximum number of resolvable targets by utilizing the specific Vandermonde

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. Y. Cui, F. Liu, X. Jing, and J. Mu, “Integrating sensing and communications for ubiquitous IoT: Applications, trends, and challenges,” IEEE Network, vol. 35, no. 5, pp. 158–167, Sep./Oct. 2021.
  2. F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and S. Buzzi, “Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond,” IEEE J. Sel. Areas Commun., vol. 40, no. 6, pp. 1728–1767, Jun. 2022.
  3. J. A. Zhang, M. L. Rahman, K. Wu, X. Huang, Y. J. Guo, S. Chen, and J. Yuan, “Enabling joint communication and radar sensing in mobile networks—A survey,” IEEE Commun. Surveys Tuts., vol. 24, no. 1, pp. 306–345, 1st Quart. 2022.
  4. E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE Commun. Mag., vol. 52, no. 2, pp. 186–195, Jan. 2014.
  5. S. A. Busari, K. M. S. Huq, S. Mumtaz, L. Dai, and J. Rodriguez, “Millimeter-wave massive MIMO communication for future wireless systems: A survey,” IEEE Commun. Surveys Tuts., vol. 20, no. 2, pp. 836–869, Jun. 2018.
  6. A. Ali, N. Gonzalez-Prelcic, R. W. Heath, and A. Ghosh, “Leveraging sensing at the infrastructure for mmwave communication,” IEEE Commun. Mag., vol. 58, no. 7, pp. 84–89, Jul. 2020.
  7. A. Zhang, M. L. Rahman, X. Huang, Y. J. Guo, S. Chen, and R. W. Heath, “Perceptive mobile networks: Cellular networks with radio vision via joint communication and radar sensing,” IEEE Veh. Technol. Mag., vol. 16, no. 2, pp. 20–30, Jun. 2021.
  8. C. Sturm and W. Wiesbeck, “Waveform design and signal processing aspects for fusion of wireless communications and radar sensing,” Proc. IEEE, vol. 99, no. 7, pp. 1236–1259, Jul. 2011.
  9. J. A. Zhang, X. Huang, Y. J. Guo, J. Yuan, and R. W. Heath, “Multibeam for joint communication and radar sensing using steerable analog antenna arrays,” IEEE Trans. Veh. Technol., vol. 68, no. 1, pp. 671–685, Jan. 2019.
  10. R. Zhang, B. Shim, W. Yuan, M. D. Renzo, X. Dang, and W. Wu, “Integrated sensing and communication waveform design with sparse vector coding: Low sidelobes and ultra reliability,” IEEE Trans. Veh. Technol., vol. 71, no. 4, pp. 4489–4494, Apr. 2022.
  11. S. D. Liyanaarachchi, T. Riihonen, C. B. Barneto, and M. Valkama, “Optimized waveforms for 5G–6G communication with sensing: Theory, simulations and experiments,” IEEE Trans. Wireless Commun., vol. 20, no. 12, pp. 8301–8315, Dec. 2021.
  12. F. Liu, L. Zhou, C. Masouros, A. Li, W. Luo, and A. Petropulu, “Toward dual-functional radar-communication systems: Optimal waveform design,” IEEE Trans. Signal Process., vol. 66, no. 16, pp. 4264–4279, Aug. 2018.
  13. X. Liu, T. Huang, N. Shlezinger, Y. Liu, J. Zhou, and Y. C. Eldar, “Joint transmit beamforming for multiuser MIMO communications and MIMO radar,” IEEE Trans. Signal Process., vol. 68, pp. 3929–3944, Jun. 2020.
  14. P. Stoica and A. Nehorai, “MUSIC, maximum likelihood, and Cramer-Rao bound,” IEEE Trans. Acoust., Speech, Signal Process., vol. 37, no. 5, pp. 720–741, May 1989.
  15. R. Roy and T. Kailath, “ESPRIT-estimation of signal parameters via rotational invariance techniques,” IEEE Trans. Acoust., Speech, Signal Process., vol. 37, no. 7, pp. 984–995, Jul. 1989.
  16. Z. Yang, L. Xie, and C. Zhang, “Off-grid direction of arrival estimation using sparse Bayesian inference,” IEEE Trans. Signal Process., vol. 61, no. 1, pp. 38–43, Jan. 2013.
  17. L. Cheng, Y. Wu, J. Zhang, and L. Liu, “Subspace identification for DOA estimation in massive/full-dimension MIMO systems: bad data mitigation and automatic source enumeration,” IEEE Trans. Signal Process., vol. 63, no. 22, pp. 5897–5909, Jan. 2015.
  18. R. Zhang, B. Shim, and W. Wu, “Direction-of-arrival estimation for large antenna arrays with hybrid analog and digital architectures,” IEEE Trans. Signal Process., vol. 70, pp. 72–88, Jan. 2022.
  19. Y. Liu, G. Liao, Y. Chen, J. Xu, and Y. Yin, “Super-resolution range and velocity estimations with OFDM integrated radar and communications waveform,” IEEE Trans. Veh. Technol., vol. 69, no. 10, pp. 11 659–11 672, Oct. 2020.
  20. R. Xie, D. Hu, K. Luo, and T. Jiang, “Performance analysis of joint range-velocity estimator with 2D-MUSIC in OFDM radar,” IEEE Trans. Signal Process., vol. 69, pp. 4787–4800, Aug. 2021.
  21. F. Zhang, Z. Zhang, W. Yu, and T.-K. Truong, “Joint range and velocity estimation with intrapulse and intersubcarrier Doppler effects for OFDM-based RadCom systems,” IEEE Trans. Signal Process., vol. 68, pp. 662–675, Jan. 2020.
  22. M. F. Keskin, H. Wymeersch, and V. Koivunen, “MIMO-OFDM joint radar-communications: Is ICI friend or foe?” IEEE J. Sel. Topics Signal Process., vol. 15, no. 6, pp. 1393–1408, Nov. 2021.
  23. M. L. Rahman, J. A. Zhang, X. Huang, Y. J. Guo, and R. W. Heath, “Framework for a perceptive mobile network using joint communication and radar sensing,” IEEE Trans. Aerosp. Electron. Syst., vol. 56, no. 3, pp. 1926–1941, Jun. 2020.
  24. N. J. Myers and R. W. Heath, “Message passing-based joint CFO and channel estimation in mmWave systems with one-bit ADCs,” IEEE Trans. Wireless Commun., vol. 18, no. 6, pp. 3064–3077, Jun. 2019.
  25. R. Zhang, B. Shim, and H. Zhao, “Downlink compressive channel estimation with phase noise in massive MIMO systems,” IEEE Trans. Commun., vol. 68, no. 9, pp. 5534–5548, Sep. 2020.
  26. J. Rodríguez-Fernández, N. González-Prelcic, K. Venugopal, and R. W. Heath, “Frequency-domain compressive channel estimation for frequency-selective hybrid millimeter wave MIMO systems,” IEEE Trans. Wireless Commun., vol. 17, no. 5, pp. 2946–2960, May 2018.
  27. A. Liao, Z. Gao, H. Wang, S. Chen, M. Alouini, and H. Yin, “Closed-loop sparse channel estimation for wideband millimeter-wave full-dimensional MIMO systems,” IEEE Trans. Commun., vol. 67, no. 12, pp. 8329–8345, Dec. 2019.
  28. W. Zhang, M. Dong, and T. Kim, “MMV-based sequential AoA and AoD estimation for millimeter wave MIMO channels,” IEEE Trans. Commun., vol. 70, no. 6, pp. 4063–4077, Jun. 2022.
  29. Q. Qin, L. Gui, P. Cheng, and B. Gong, “Time-varying channel estimation for millimeter wave multiuser MIMO systems,” IEEE Trans. Veh. Technol., vol. 67, no. 10, pp. 9435–9448, Oct. 2018.
  30. Y. Liu, S. Zhang, F. Gao, J. Ma, and X. Wang, “Uplink-aided high mobility downlink channel estimation over massive MIMO-OTFS system,” IEEE J. Sel. Areas Commun., vol. 38, no. 9, pp. 1994–2009, Sep. 2020.
  31. B. Wang, F. Gao, S. Jin, H. Lin, G. Y. Li, S. Sun, and T. S. Rappaport, “Spatial-wideband effect in massive MIMO with application in mmWave systems,” IEEE Commun. Mag., vol. 56, no. 12, pp. 134–141, Dec. 2018.
  32. M. Wang, F. Gao, S. Jin, and H. Lin, “An overview of enhanced massive MIMO with array signal processing techniques,” IEEE J. Sel. Topics Signal Process., vol. 13, no. 5, pp. 886–901, May 2019.
  33. M. Wang, F. Gao, N. Shlezinger, M. F. Flanagan, and Y. C. Eldar, “A block sparsity based estimator for mmWave massive MIMO channels with beam squint,” IEEE Trans. Signal Process., vol. 68, pp. 49–64, Jan. 2020.
  34. Z. Zhou, J. Fang, L. Yang, H. Li, Z. Chen, and R. S. Blum, “Low-rank tensor decomposition-aided channel estimation for millimeter wave MIMO-OFDM systems,” IEEE J. Sel. Areas Commun., vol. 35, no. 7, pp. 1524–1538, Jul. 2017.
  35. S. Park, A. Ali, N. González-Prelcic, and R. W. Heath, “Spatial channel covariance estimation for hybrid architectures based on tensor decompositions,” IEEE Trans. Wireless Commun., vol. 19, no. 2, pp. 1084–1097, Feb. 2019.
  36. C. Qian, X. Fu, and N. D. Sidiropoulos, “Algebraic channel estimation algorithms for FDD massive MIMO systems,” IEEE J. Sel. Topics Signal Process., vol. 13, no. 5, pp. 961–973, Sep. 2019.
  37. Y. Lin, S. Jin, M. Matthaiou, and X. You, “Tensor-based channel estimation for millimeter wave MIMO-OFDM with dual-wideband effects,” IEEE Trans. Commun., vol. 68, no. 7, pp. 4218–4232, Jul. 2020.
  38. R. Zhang, L. Cheng, S. Wang, Y. Lou, W. Wu, and D. W. K. Ng, “Tensor decomposition-based channel estimation for hybrid mmWave massive MIMO in high-mobility scenarios,” IEEE Trans. Commun., vol. 70, no. 9, pp. 6325–6340, Sep. 2022.
  39. F. Liu, W. Yuan, C. Masouros, and J. Yuan, “Radar-assisted predictive beamforming for vehicular links: Communication served by sensing,” IEEE Trans. Wireless Commun., vol. 19, no. 11, pp. 7704–7719, Nov. 2020.
  40. F. Liu, C. Masouros, A. P. Petropulu, H. Griffiths, and L. Hanzo, “Joint radar and communication design: Applications, state-of-the-art, and the road ahead,” IEEE Trans. Commun., vol. 68, no. 6, pp. 3834–3862, Jun. 2020.
  41. W. Yuan, Z. Wei, S. Li, J. Yuan, and D. W. K. Ng, “Integrated sensing and communication-assisted orthogonal time frequency space transmission for vehicular networks,” IEEE J. Sel. Topics Signal Process., vol. 15, no. 6, pp. 1515–1528, Jun. 2021.
  42. S. Huang, M. Zhang, Y. Gao, and Z. Feng, “MIMO radar aided mmwave time-varying channel estimation in MU-MIMO V2X communications,” IEEE Trans. Wireless Commun., vol. 20, no. 11, pp. 7581–7594, Nov. 2021.
  43. R. Ertel, P. Cardieri, K. Sowerby, T. Rappaport, and J. Reed, “Overview of spatial channel models for antenna array communication systems,” IEEE Pers. Commun., vol. 5, no. 1, pp. 10–22, Jan. 1998.
  44. R. F. Tigrek, W. J. A. De Heij, and P. Van Genderen, “OFDM signals as the radar waveform to solve Doppler ambiguity,” IEEE Trans. Aerosp. Electron. Syst., vol. 48, no. 1, pp. 130–143, Jan. 2012.
  45. L. Cheng, Y.-C. Wu, and H. V. Poor, “Probabilistic tensor canonical polyadic decomposition with orthogonal factors,” IEEE Trans. Signal Process., vol. 65, no. 3, pp. 663–676, Feb. 2017.
  46. A. Stegeman and N. D. Sidiropoulos, “On Kruskal’s uniqueness condition for the Candecomp/Parafac decomposition,” Linear Algebra Appl., vol. 420, no. 2-3, pp. 540–552, Jan. 2007.
  47. M. Sørensen and L. De Lathauwer, “Blind signal separation via tensor decomposition with Vandermonde factor: Canonical polyadic decomposition,” IEEE Trans. Signal Process., vol. 61, no. 22, pp. 5507–5519, Nov. 2013.
  48. T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM Rev., vol. 51, no. 3, pp. 455–500, Sep. 2009.
  49. J. A. Bazerque, G. Mateos, and G. B. Giannakis, “Rank regularization and bayesian inference for tensor completion and extrapolation,” IEEE Trans. Signal Process., vol. 61, no. 22, pp. 5689–5703, 2013.
  50. L. Cheng, Z. Chen, Q. Shi, Y.-C. Wu, and S. Theodoridis, “Towards flexible sparsity-aware modeling: automatic tensor rank learning using the generalized hyperbolic prior,” IEEE Trans. Signal Process., vol. 70, pp. 1834–1849, Apr. 2022.
  51. K. Liu, J. P. C. d. Costa, H. C. So, L. Huang, and J. Ye, “Detection of number of components in CANDECOMP/PARAFAC models via minimum description length,” Digit. Signal Process., vol. 51, p. 110–123, Apr. 2016.
  52. T. Yokota, N. Lee, and A. Cichocki, “Robust multilinear tensor rank estimation using higher order singular value decomposition and information criteria,” IEEE Trans. Signal Process., vol. 65, no. 5, p. 1196–1206, Mar. 2017.
  53. B. Mamandipoor, D. Ramasamy, and U. Madhow, “Newtonized orthogonal matching pursuit: Frequency estimation over the continuum,” IEEE Trans. Signal Process., vol. 64, no. 19, pp. 5066–5081, Oct. 2016.
Citations (75)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: