Papers
Topics
Authors
Recent
Search
2000 character limit reached

Symmetries in Riemann-Cartan Geometries

Published 1 Jan 2024 in gr-qc and math.DG | (2401.00780v2)

Abstract: Riemann-Cartan geometries are geometries that admit non-zero curvature and torsion tensors. These geometries have been investigated as geometric frameworks for potential theories in physics including quantum gravity theories and have many important differences when compared to Riemannian geometries. One notable difference, is the number of symmetries for a Riemann-Cartan geometry is potentially smaller than the number of Killing vector fields for the metric. In this paper, we will review the investigation of symmetries in Riemann-Cartan geometries and the mathematical tools used to determine geometries that admit a given group of symmetries. As an illustration, we present new results by determining all static spherically symmetric and all stationary spherically symmetric Riemann-Cartan geometries. Furthermore, we have determined the subclasses of spherically symmetric Riemann-Cartan geometries that admit a seven-dimensional group of symmetries.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (10)
  1. A. Trautman, Arxiv Preprint  (2006), arXiv:gr-qc/0606062 .
  2. M. Krššák and J. G. Pereira, The European Physical Journal C75, 519 (2015), arXiv:1504.07683 [gr-qc] .
  3. M. Tsamparlis, Physical Review D 24, 1451 (1981).
  4. A. A. Coley, R. J. Van Den Hoogen, and D. D. McNutt, Journal of Mathematical Physics 61, 072503 (2020), arXiv:1911.03893 [gr-qc] .
  5. M. Hohmann, Phys. Rev. D 104, 124077 (2021), arXiv:2109.01525 [gr-qc] .
  6. C. Pfeifer, A quick guide to spacetime symmetry and symmetric solutions in teleparallel gravity  (2022), arXiv:2201.04691 [gr-qc] .
  7. D. D. McNutt, A. A. Coley, and R. J. van den Hoogen, J. Math. Phys. 64, 032503 (2023), arXiv:2302.11493 [gr-qc] .
  8. J. B. Fonseca-Neto, M. J. Reboucas, and M. A. H. MacCallum, Mathematics and Computers in Simulation 42, 739 (1996).
  9. P. J. Olver, Equivalence, invariants and symmetry (Cambridge University Press, 1995).
  10. K. Yano, The theory of Lie derivatives and its applications (Courier Dover Publications, 2020).

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.