Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 202 tok/s Pro
2000 character limit reached

Symmetries in Riemann-Cartan Geometries (2401.00780v2)

Published 1 Jan 2024 in gr-qc and math.DG

Abstract: Riemann-Cartan geometries are geometries that admit non-zero curvature and torsion tensors. These geometries have been investigated as geometric frameworks for potential theories in physics including quantum gravity theories and have many important differences when compared to Riemannian geometries. One notable difference, is the number of symmetries for a Riemann-Cartan geometry is potentially smaller than the number of Killing vector fields for the metric. In this paper, we will review the investigation of symmetries in Riemann-Cartan geometries and the mathematical tools used to determine geometries that admit a given group of symmetries. As an illustration, we present new results by determining all static spherically symmetric and all stationary spherically symmetric Riemann-Cartan geometries. Furthermore, we have determined the subclasses of spherically symmetric Riemann-Cartan geometries that admit a seven-dimensional group of symmetries.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (10)
  1. A. Trautman, Arxiv Preprint  (2006), arXiv:gr-qc/0606062 .
  2. M. Krššák and J. G. Pereira, The European Physical Journal C75, 519 (2015), arXiv:1504.07683 [gr-qc] .
  3. M. Tsamparlis, Physical Review D 24, 1451 (1981).
  4. A. A. Coley, R. J. Van Den Hoogen, and D. D. McNutt, Journal of Mathematical Physics 61, 072503 (2020), arXiv:1911.03893 [gr-qc] .
  5. M. Hohmann, Phys. Rev. D 104, 124077 (2021), arXiv:2109.01525 [gr-qc] .
  6. C. Pfeifer, A quick guide to spacetime symmetry and symmetric solutions in teleparallel gravity  (2022), arXiv:2201.04691 [gr-qc] .
  7. D. D. McNutt, A. A. Coley, and R. J. van den Hoogen, J. Math. Phys. 64, 032503 (2023), arXiv:2302.11493 [gr-qc] .
  8. J. B. Fonseca-Neto, M. J. Reboucas, and M. A. H. MacCallum, Mathematics and Computers in Simulation 42, 739 (1996).
  9. P. J. Olver, Equivalence, invariants and symmetry (Cambridge University Press, 1995).
  10. K. Yano, The theory of Lie derivatives and its applications (Courier Dover Publications, 2020).
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com