Papers
Topics
Authors
Recent
Search
2000 character limit reached

$k$ Summands of Syzygies over Rings of Positive Burch Index Via Canonical Resolutions

Published 30 Dec 2023 in math.AC | (2401.00142v1)

Abstract: In recent work, Dao and Eisenbud define the notion of a Burch index, expanding the notion of Burch rings of Dao, Kobayashi, and Takahashi, and show that for any module over a ring of Burch index at least 2, its $n$th syzygy contains direct summands of the residue field for $n=4$ or $5$ and all $n\geq 7$. We investigate how this behavior is explained by the bar resolution formed from appropriate differential graded (dg) resolutions, yielding a new proof that includes all $n\geq 5$, which is sharp. When the module is Golod, we use instead the bar resolution formed from $A_\infty$ resolutions to identify such $k$ summands explicitly for all $n\geq 4$ and show that the number of these grows exponentially as the homological degree increases.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.