Probing interacting dark sector models with future weak lensing-informed galaxy cluster abundance constraints from SPT-3G and CMB-S4 (2312.17622v1)
Abstract: We forecast the sensitivity of ongoing and future galaxy cluster abundance measurements to detect deviations from the cold dark matter (CDM) paradigm. Concretely, we consider a class of dark sector models that feature an interaction between dark matter and a dark radiation species (IDM-DR). This setup can be naturally realized by a non-Abelian gauge symmetry and has the potential to explain $S_8$ tensions arising within $\Lambda$CDM. We create mock catalogs of the ongoing SPT-3G as well as the future CMB-S4 surveys of galaxy clusters selected via the thermal Sunyaev-Zeldovich effect (tSZE). Both datasets are complemented with cluster mass calibration from next-generation weak gravitational lensing data (ngWL) like those expected from the Euclid mission and the Vera C. Rubin Observatory. We consider an IDM-DR scenario with parameters chosen to be in agreement with Planck 2018 data and that also leads to a low value of $S_8$ as indicated by some local structure formation analyses. Accounting for systematic and stochastic uncertainties in the mass determination and the cluster tSZE selection, we find that both SPT-3G$\times$ngWL and CMB-S4$\times$ngWL cluster data will be able to discriminate this IDM-DR model from $\Lambda$CDM, and thus test whether dark matter - dark radiation interactions are responsible for lowering $S_8$. Assuming IDM-DR, we forecast that the temperature of the dark radiation can be determined to about 40% (10%) with SPT-3G$\times$ngWL (CMB-S4$\times$ngWL), considering 68% credibility, while $S_8$ can be recovered with percent-level accuracy. Furthermore, we show that IDM-DR can be discriminated from massive neutrinos, and that cluster counts will be able to constrain the dark radiation temperature to be below $\sim 10%$ (at 95% credibility) of the cosmic microwave background temperature if the true cosmological model is $\Lambda$CDM.
- N. Aghanim et al. (Planck), Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
- S. Alam et al. (eBOSS), Phys. Rev. D 103, 083533 (2021), arXiv:2007.08991 [astro-ph.CO] .
- S. Bocquet et al. (SPT), Astrophys. J. 878, 55 (2019), arXiv:1812.01679 [astro-ph.CO] .
- S. Alam et al. (BOSS), Mon. Not. Roy. Astron. Soc. 470, 2617 (2017), arXiv:1607.03155 [astro-ph.CO] .
- B. Reid et al., Mon. Not. Roy. Astron. Soc. 455, 1553 (2016), arXiv:1509.06529 [astro-ph.CO] .
- C. Heymans et al., Astron. Astrophys. 646, A140 (2021), arXiv:2007.15632 [astro-ph.CO] .
- T. M. C. Abbott et al. (DES), Phys. Rev. D 105, 023520 (2022), arXiv:2105.13549 [astro-ph.CO] .
- T. M. C. Abbott et al. (Kilo-Degree Survey, DES), (2023), arXiv:2305.17173 [astro-ph.CO] .
- Dark Energy Survey and Kilo-Degree Survey Collaboration, The Open Journal of Astrophysics 6, 36 (2023), arXiv:2305.17173 [astro-ph.CO] .
- K. N. Abazajian et al. (CMB-S4), (2016), arXiv:1610.02743 [astro-ph.CO] .
- K. Abazajian et al., (2019), arXiv:1907.04473 [astro-ph.IM] .
- R. Laureijs et al. (Euclid), arXiv e-prints , arXiv:1110.3193 (2011), arXiv:1110.3193 [astro-ph.CO] .
- L. Amendola et al. (Euclid Theory Working Group), Living Rev. Rel. 16, 6 (2013), arXiv:1206.1225 [astro-ph.CO] .
- R. Scaramella et al. (Euclid), Astron. Astrophys. 662, A112 (2022), arXiv:2108.01201 [astro-ph.CO] .
- v. Ivezić et al. (LSST), Astrophys. J. 873, 111 (2019), arXiv:0805.2366 [astro-ph] .
- A. G. Riess, Nature Rev. Phys. 2, 10 (2019), arXiv:2001.03624 [astro-ph.CO] .
- R. C. Nunes and S. Vagnozzi, Mon. Not. Roy. Astron. Soc. 505, 5427 (2021), arXiv:2106.01208 [astro-ph.CO] .
- A. Amon and G. Efstathiou, (2022), 10.1093/mnras/stac2429, arXiv:2206.11794 [astro-ph.CO] .
- J. S. Bullock and M. Boylan-Kolchin, Ann. Rev. Astron. Astrophys. 55, 343 (2017), arXiv:1707.04256 [astro-ph.CO] .
- S. Tulin and H.-B. Yu, Phys. Rept. 730, 1 (2018), arXiv:1705.02358 [hep-ph] .
- L. Fuß and M. Garny, (2022), arXiv:2210.06117 [astro-ph.CO] .
- C. Hikage et al. (HSC), Publ. Astron. Soc. Jap. 71, 43 (2019), arXiv:1809.09148 [astro-ph.CO] .
- S. Chabanier et al., JCAP 07, 017 (2019), arXiv:1812.03554 [astro-ph.CO] .
- Z. Chen et al., (2023), arXiv:2309.16323 [astro-ph.CO] .
- Z. Staniszewski et al., ApJ 701, 32 (2009), arXiv:0810.1578 [astro-ph] .
- M. Hilton et al. (ACT, DES), Astrophys. J. Suppl. 253, 3 (2021), arXiv:2009.11043 [astro-ph.CO] .
- P. A. R. Ade et al. (Planck), Astron. Astrophys. 594, A27 (2016), arXiv:1502.01598 [astro-ph.CO] .
- S. Bocquet and others., (2024).
- J. E. Carlstrom et al., PASP 123, 568 (2011), arXiv:0907.4445 [astro-ph.IM] .
- M. LoVerde and M. Zaldarriaga, Phys. Rev. D 89, 063502 (2014), arXiv:1310.6459 [astro-ph.CO] .
- B. A. Benson et al. (SPT-3G), Proc. SPIE Int. Soc. Opt. Eng. 9153, 91531P (2014), arXiv:1407.2973 [astro-ph.IM] .
- J. E. Austermann et al., Proc. SPIE Int. Soc. Opt. Eng. 8452, 84521E (2012), arXiv:1210.4970 [astro-ph.IM] .
- K. Vanderlinde et al., The Astrophysical Journal 722, 1180 (2010).
- M. R. Becker and A. V. Kravtsov, ApJ 740, 25 (2011), arXiv:1011.1681 [astro-ph.CO] .
- D. Nelson et al., (2018), arXiv:1812.05609 [astro-ph.GA] .
- J. Lesgourgues, (2011a), arXiv:1104.2932 [astro-ph.IM] .
- J. Lesgourgues, (2011b), arXiv:1104.2934 [astro-ph.CO] .
- F. Feroz and M. P. Hobson, Mon. Not. Roy. Astron. Soc. 384, 449 (2008), arXiv:0704.3704 [astro-ph] .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.