Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Probing interacting dark sector models with future weak lensing-informed galaxy cluster abundance constraints from SPT-3G and CMB-S4 (2312.17622v1)

Published 29 Dec 2023 in astro-ph.CO and hep-ph

Abstract: We forecast the sensitivity of ongoing and future galaxy cluster abundance measurements to detect deviations from the cold dark matter (CDM) paradigm. Concretely, we consider a class of dark sector models that feature an interaction between dark matter and a dark radiation species (IDM-DR). This setup can be naturally realized by a non-Abelian gauge symmetry and has the potential to explain $S_8$ tensions arising within $\Lambda$CDM. We create mock catalogs of the ongoing SPT-3G as well as the future CMB-S4 surveys of galaxy clusters selected via the thermal Sunyaev-Zeldovich effect (tSZE). Both datasets are complemented with cluster mass calibration from next-generation weak gravitational lensing data (ngWL) like those expected from the Euclid mission and the Vera C. Rubin Observatory. We consider an IDM-DR scenario with parameters chosen to be in agreement with Planck 2018 data and that also leads to a low value of $S_8$ as indicated by some local structure formation analyses. Accounting for systematic and stochastic uncertainties in the mass determination and the cluster tSZE selection, we find that both SPT-3G$\times$ngWL and CMB-S4$\times$ngWL cluster data will be able to discriminate this IDM-DR model from $\Lambda$CDM, and thus test whether dark matter - dark radiation interactions are responsible for lowering $S_8$. Assuming IDM-DR, we forecast that the temperature of the dark radiation can be determined to about 40% (10%) with SPT-3G$\times$ngWL (CMB-S4$\times$ngWL), considering 68% credibility, while $S_8$ can be recovered with percent-level accuracy. Furthermore, we show that IDM-DR can be discriminated from massive neutrinos, and that cluster counts will be able to constrain the dark radiation temperature to be below $\sim 10%$ (at 95% credibility) of the cosmic microwave background temperature if the true cosmological model is $\Lambda$CDM.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. N. Aghanim et al. (Planck), Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
  2. S. Alam et al. (eBOSS), Phys. Rev. D 103, 083533 (2021), arXiv:2007.08991 [astro-ph.CO] .
  3. S. Bocquet et al. (SPT), Astrophys. J. 878, 55 (2019), arXiv:1812.01679 [astro-ph.CO] .
  4. S. Alam et al. (BOSS), Mon. Not. Roy. Astron. Soc. 470, 2617 (2017), arXiv:1607.03155 [astro-ph.CO] .
  5. B. Reid et al., Mon. Not. Roy. Astron. Soc. 455, 1553 (2016), arXiv:1509.06529 [astro-ph.CO] .
  6. C. Heymans et al., Astron. Astrophys. 646, A140 (2021), arXiv:2007.15632 [astro-ph.CO] .
  7. T. M. C. Abbott et al. (DES), Phys. Rev. D 105, 023520 (2022), arXiv:2105.13549 [astro-ph.CO] .
  8. T. M. C. Abbott et al. (Kilo-Degree Survey, DES),   (2023), arXiv:2305.17173 [astro-ph.CO] .
  9. Dark Energy Survey and Kilo-Degree Survey Collaboration, The Open Journal of Astrophysics 6, 36 (2023), arXiv:2305.17173 [astro-ph.CO] .
  10. K. N. Abazajian et al. (CMB-S4),   (2016), arXiv:1610.02743 [astro-ph.CO] .
  11. K. Abazajian et al.,   (2019), arXiv:1907.04473 [astro-ph.IM] .
  12. R. Laureijs et al. (Euclid), arXiv e-prints , arXiv:1110.3193 (2011), arXiv:1110.3193 [astro-ph.CO] .
  13. L. Amendola et al. (Euclid Theory Working Group), Living Rev. Rel. 16, 6 (2013), arXiv:1206.1225 [astro-ph.CO] .
  14. R. Scaramella et al. (Euclid), Astron. Astrophys. 662, A112 (2022), arXiv:2108.01201 [astro-ph.CO] .
  15. v. Ivezić et al. (LSST), Astrophys. J. 873, 111 (2019), arXiv:0805.2366 [astro-ph] .
  16. A. G. Riess, Nature Rev. Phys. 2, 10 (2019), arXiv:2001.03624 [astro-ph.CO] .
  17. R. C. Nunes and S. Vagnozzi, Mon. Not. Roy. Astron. Soc. 505, 5427 (2021), arXiv:2106.01208 [astro-ph.CO] .
  18. A. Amon and G. Efstathiou,   (2022), 10.1093/mnras/stac2429, arXiv:2206.11794 [astro-ph.CO] .
  19. J. S. Bullock and M. Boylan-Kolchin, Ann. Rev. Astron. Astrophys. 55, 343 (2017), arXiv:1707.04256 [astro-ph.CO] .
  20. S. Tulin and H.-B. Yu, Phys. Rept. 730, 1 (2018), arXiv:1705.02358 [hep-ph] .
  21. L. Fuß and M. Garny,   (2022), arXiv:2210.06117 [astro-ph.CO] .
  22. C. Hikage et al. (HSC), Publ. Astron. Soc. Jap. 71, 43 (2019), arXiv:1809.09148 [astro-ph.CO] .
  23. S. Chabanier et al., JCAP 07, 017 (2019), arXiv:1812.03554 [astro-ph.CO] .
  24. Z. Chen et al.,   (2023), arXiv:2309.16323 [astro-ph.CO] .
  25. Z. Staniszewski et al., ApJ 701, 32 (2009), arXiv:0810.1578 [astro-ph] .
  26. M. Hilton et al. (ACT, DES), Astrophys. J. Suppl. 253, 3 (2021), arXiv:2009.11043 [astro-ph.CO] .
  27. P. A. R. Ade et al. (Planck), Astron. Astrophys. 594, A27 (2016), arXiv:1502.01598 [astro-ph.CO] .
  28. S. Bocquet and others.,   (2024).
  29. J. E. Carlstrom et al., PASP 123, 568 (2011), arXiv:0907.4445 [astro-ph.IM] .
  30. M. LoVerde and M. Zaldarriaga, Phys. Rev. D 89, 063502 (2014), arXiv:1310.6459 [astro-ph.CO] .
  31. B. A. Benson et al. (SPT-3G), Proc. SPIE Int. Soc. Opt. Eng. 9153, 91531P (2014), arXiv:1407.2973 [astro-ph.IM] .
  32. J. E. Austermann et al., Proc. SPIE Int. Soc. Opt. Eng. 8452, 84521E (2012), arXiv:1210.4970 [astro-ph.IM] .
  33. K. Vanderlinde et al., The Astrophysical Journal 722, 1180 (2010).
  34. M. R. Becker and A. V. Kravtsov, ApJ 740, 25 (2011), arXiv:1011.1681 [astro-ph.CO] .
  35. D. Nelson et al.,   (2018), arXiv:1812.05609 [astro-ph.GA] .
  36. J. Lesgourgues,   (2011a), arXiv:1104.2932 [astro-ph.IM] .
  37. J. Lesgourgues,   (2011b), arXiv:1104.2934 [astro-ph.CO] .
  38. F. Feroz and M. P. Hobson, Mon. Not. Roy. Astron. Soc. 384, 449 (2008), arXiv:0704.3704 [astro-ph] .
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: