Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 63 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Wellposedness and singularity formation beyond the Yudovich class (2312.17610v1)

Published 29 Dec 2023 in math.AP

Abstract: We introduce a local-in-time existence and uniqueness class for solutions to the 2d Euler equation with unbounded vorticity. Furthermore, we show that solutions belonging to this class can develop stronger singularities in finite time, meaning that they experience finite time blow up and exit the wellposedness class. Such solutions may be continued as weak solutions (potentially non-uniquely) after the singularity. While the general dynamics of 2d Euler solutions beyond the Yudovich class will certainly not be so tame, studying such solutions gives a way to study singular phenomena in a more controlled setting.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. Instability and nonuniqueness for the 2⁢d2𝑑2d2 italic_d Euler equations in vorticity form, after M. Vishik. arXiv preprint arXiv:2112.04943, 2021.
  2. F Bernicot and S Keraani. On the global well-posedness of the 2d Euler equations for a large class of Yudovich type data. Ann. Sci. École Norm. Sup.(4), 2014.
  3. On the inviscid limit of the 2d Navier–Stokes equations with vorticity belonging to BMO-type spaces. In Annales de l’Institut Henri Poincaré C, Analyse non linéaire, volume 33, pages 597–619. Elsevier, 2016.
  4. AL Bertozzi and P Constantin. Global regularity for vortex patches. Communications in Mathematical Physics, 152(1):19–28, 1993.
  5. Strong ill-posedness of the incompressible Euler equation in borderline Sobolev spaces. Inventiones mathematicae, 201:97–157, 2015.
  6. Strong illposedness of the incompressible Euler equation in integer Cmsuperscript𝐶𝑚C^{m}italic_C start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT spaces. Geometric and Functional Analysis, 25:1–86, 2015.
  7. Convex integration and phenomenologies in turbulence. EMS Surveys in Mathematical Sciences, 6(1):173–263, 2020.
  8. Jean-Yves Chemin. Persistance de structures géométriques dans les fluides incompressibles bidimensionnels. In Annales scientifiques de l’Ecole normale supérieure, volume 26, pages 517–542, 1993.
  9. Instantaneous gap loss of Sobolev regularity for the 2d incompressible Euler equations. arXiv preprint arXiv:2210.17458, 2022.
  10. Dissipative continuous Euler flows. Inventiones mathematicae, 193:377–407, 2013.
  11. J-M Delort. Existence de nappes de tourbillon pour l’équation d’Euler sur le plan. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi” Séminaire Goulaouic-Schwartz”, pages 1–12, 1991.
  12. Concentrations in regularizations for 2-d incompressible flow. Communications on Pure and Applied Mathematics, 40(3):301–345, 1987.
  13. Hydrodynamic stability. Cambridge university press, 2004.
  14. Singularity formation in the incompressible Euler equation in finite and infinite time. arXiv preprint arXiv:2203.17221, 2022.
  15. Propagation of singularities by Osgood vector fields and for 2d inviscid incompressible fluids. Mathematische Annalen, pages 1–28, 2022.
  16. On singular vortex patches, ii: long-time dynamics. Transactions of the American Mathematical Society, 373(9):6757–6775, 2020.
  17. On the long-time behavior of scale-invariant solutions to the 2d Euler equation and applications. arXiv preprint arXiv:2211.08418, 2022.
  18. On singular vortex patches, i: Well-posedness issues. arXiv preprint arXiv:1903.00833, 2019.
  19. Symmetries and critical phenomena in fluids. Comm. Pure Appl. Math., 73(2):257–316, 2020.
  20. L∞superscript𝐿L^{\infty}italic_L start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ill-posedness for a class of equations arising in hydrodynamics. Archive for Rational Mechanics and Analysis, 235(3):1979–2025, 2020.
  21. Ill-posedness for the incompressible Euler equations in critical Sobolev spaces. Annals of PDE, 3:1–19, 2017.
  22. Volker Elling. Algebraic spiral solutions of 2d incompressible Euler. Journal of Differential Equations, 255(11):3749–3787, 2013.
  23. The 2d Onsager conjecture: a Newton–Nash iteration. arXiv preprint arXiv:2305.18105, 2023.
  24. Incompressible viscous flows in borderline Besov spaces. Archive for Rational Mechanics and Analysis, 189(2):283–300, 2008.
  25. Ernst Hölder. Über die unbeschränkte fortsetzbarkeit einer stetigen ebenen bewegung in einer unbegrenzten inkompressiblen flüssigkeit. Mathematische Zeitschrift, 37(1):727–738, 1933.
  26. Philip Isett. A proof of Onsager’s conjecture. Annals of Mathematics, 188(3):871–963, 2018.
  27. In-Jee Jeong. Loss of regularity for the 2d Euler equations. Journal of Mathematical Fluid Mechanics, 23:1–11, 2021.
  28. Logarithmic spirals in 2d perfect fluids. arXiv preprint arXiv:2302.09447, 2023.
  29. Leon Lichtenstein. Über einige existenzprobleme der hydrodynamik homogener, unzusammendrückbarer, reibungsloser flüssigkeiten und die helmholtzschen wirbelsätze. Mathematische Zeitschrift, 23(1):89–154, 1925.
  30. Vorticity and incompressible flow. cambridge texts in applied mathematics. Appl. Mech. Rev., 55(4):B77–B78, 2002.
  31. Mathematical theory of incompressible nonviscous fluids, volume 96. Springer Science & Business Media, 2012.
  32. Philip G Saffman. Vortex dynamics. Cambridge university press, 1995.
  33. Vladimir Scheffer. An inviscid flow with compact support in space-time. Journal of geometric analysis, 3(4), 1993.
  34. Philippe Serfati. Pertes de régularité pour le laplacien et l’équation d’euler sur rn. preprint, 7, 1994.
  35. Self-similar algebraic spiral solution of 2-d incompressible Euler equations. arXiv preprint arXiv:2305.05182, 2023.
  36. Alexander Shnirelman. On the nonuniqueness of weak solution of the Euler equation. Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, 50(12):1261–1286, 1997.
  37. M. Vishik. Instability and non-uniqueness in the cauchy problem for the Euler equations of an ideal incompressible fluid. part i. arXiv preprint.
  38. M. Vishik. Instability and non-uniqueness in the cauchy problem for the Euler equations of an ideal incompressible fluid. part ii. arXiv preprint.
  39. Misha Vishik. Hydrodynamics in besov spaces. Archive for Rational Mechanics and Analysis, 145:197–214, 1998.
  40. Misha Vishik. Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type. In Annales scientifiques de l’Ecole normale supérieure, volume 32, pages 769–812, 1999.
  41. Witold Wolibner. Un théoreme sur l’existence du mouvement plan d’un fluide parfait, homogène, incompressible, pendant un temps infiniment long. Mathematische Zeitschrift, 37:698–726, 1933.
  42. Victor Iosifovich Yudovich. Non-stationary flows of an ideal incompressible fluid. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 3(6):1032–1066, 1963.
  43. Victor Iosifovich Yudovich. Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid. Mathematical Research Letters, 2(1):27–38, 1995.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: