Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Thermodynamic formalism and anomalous transport in 1D semiclassical Bose-Hubbard chain (2312.17008v2)

Published 28 Dec 2023 in quant-ph, cond-mat.quant-gas, cond-mat.stat-mech, and nlin.CD

Abstract: We analyze the time-dependent free energy functionals of the semiclassical one-dimensional Bose-Hubbard chain. We first review the weakly chaotic dynamics and the consequent early-time anomalous diffusion in the system. The anomalous diffusion is robust, appears with strictly quantized coefficients, and persists even for very long chains (more than hundred sites), crossing over to normal diffusion at late times. We identify fast (angle) and slow (action) variables and thus consider annealed and quenched partition functions, corresponding to fixing the actions and integrating over the actions, respectively. We observe the leading quantum effects in the annealed free energy, whereas the quenched energy is undefined in the thermodynamic limit, signaling the absence of thermodynamic equilibrium in the quenched regime. But already the leading correction away from the quenched regime reproduces the annealed partition function exactly. This encapsulates the fact that in both slow- and fast-chaos regime both the anomalous and the normal diffusion can be seen (though at different times).

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. Sachdev, S., Ye, J.: Gapless spin-fluid ground state in a random quantum heisenberg magnet. Phys. Rev. Lett. 70, 3339–3342 (1993) https://doi.org/10.1103/PhysRevLett.70.3339 Maldacena and Stanford [2016] Maldacena, J., Stanford, D.: Remarks on the Sachdev-Ye-Kitaev model. Phys. Rev. D 94(10), 106002 (2016) https://doi.org/10.1103/PhysRevD.94.106002 arXiv:1604.07818 [hep-th] Marcus and Vandoren [2019] Marcus, E., Vandoren, S.: A new class of SYK-like models with maximal chaos. JHEP 01, 166 (2019) https://doi.org/10.1007/JHEP01(2019)166 arXiv:1808.01190 [hep-th] Shenker and Stanford [2014] Shenker, S.H., Stanford, D.: Black holes and the butterfly effect. JHEP 03, 067 (2014) https://doi.org/10.1007/JHEP03(2014)067 arXiv:1306.0622 [hep-th] Maldacena et al. [2016] Maldacena, J., Shenker, S.H., Stanford, D.: A bound on chaos. JHEP 08, 106 (2016) https://doi.org/10.1007/JHEP08(2016)106 arXiv:1503.01409 [hep-th] Xu et al. [2020] Xu, T., Scaffidi, T., Cao, X.: Does scrambling equal chaos? Phys. Rev. Lett. 124, 140602 (2020) https://doi.org/10.1103/PhysRevLett.124.140602 Hashimoto et al. [2017] Hashimoto, K., Murata, K., Yoshii, R.: Out-of-time-order correlators in quantum mechanics. JHEP 10, 138 (2017) https://doi.org/10.1007/JHEP10(2017)138 arXiv:1703.09435 [hep-th] Roberts and Yoshida [2017] Roberts, D.A., Yoshida, B.: Chaos and complexity by design. JHEP 04, 121 (2017) https://doi.org/10.1007/JHEP04(2017)121 arXiv:1610.04903 [quant-ph] Jefferson and Myers [2017] Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Maldacena, J., Stanford, D.: Remarks on the Sachdev-Ye-Kitaev model. Phys. Rev. D 94(10), 106002 (2016) https://doi.org/10.1103/PhysRevD.94.106002 arXiv:1604.07818 [hep-th] Marcus and Vandoren [2019] Marcus, E., Vandoren, S.: A new class of SYK-like models with maximal chaos. JHEP 01, 166 (2019) https://doi.org/10.1007/JHEP01(2019)166 arXiv:1808.01190 [hep-th] Shenker and Stanford [2014] Shenker, S.H., Stanford, D.: Black holes and the butterfly effect. JHEP 03, 067 (2014) https://doi.org/10.1007/JHEP03(2014)067 arXiv:1306.0622 [hep-th] Maldacena et al. [2016] Maldacena, J., Shenker, S.H., Stanford, D.: A bound on chaos. JHEP 08, 106 (2016) https://doi.org/10.1007/JHEP08(2016)106 arXiv:1503.01409 [hep-th] Xu et al. [2020] Xu, T., Scaffidi, T., Cao, X.: Does scrambling equal chaos? Phys. Rev. Lett. 124, 140602 (2020) https://doi.org/10.1103/PhysRevLett.124.140602 Hashimoto et al. [2017] Hashimoto, K., Murata, K., Yoshii, R.: Out-of-time-order correlators in quantum mechanics. JHEP 10, 138 (2017) https://doi.org/10.1007/JHEP10(2017)138 arXiv:1703.09435 [hep-th] Roberts and Yoshida [2017] Roberts, D.A., Yoshida, B.: Chaos and complexity by design. JHEP 04, 121 (2017) https://doi.org/10.1007/JHEP04(2017)121 arXiv:1610.04903 [quant-ph] Jefferson and Myers [2017] Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Marcus, E., Vandoren, S.: A new class of SYK-like models with maximal chaos. JHEP 01, 166 (2019) https://doi.org/10.1007/JHEP01(2019)166 arXiv:1808.01190 [hep-th] Shenker and Stanford [2014] Shenker, S.H., Stanford, D.: Black holes and the butterfly effect. JHEP 03, 067 (2014) https://doi.org/10.1007/JHEP03(2014)067 arXiv:1306.0622 [hep-th] Maldacena et al. [2016] Maldacena, J., Shenker, S.H., Stanford, D.: A bound on chaos. JHEP 08, 106 (2016) https://doi.org/10.1007/JHEP08(2016)106 arXiv:1503.01409 [hep-th] Xu et al. [2020] Xu, T., Scaffidi, T., Cao, X.: Does scrambling equal chaos? Phys. Rev. Lett. 124, 140602 (2020) https://doi.org/10.1103/PhysRevLett.124.140602 Hashimoto et al. [2017] Hashimoto, K., Murata, K., Yoshii, R.: Out-of-time-order correlators in quantum mechanics. JHEP 10, 138 (2017) https://doi.org/10.1007/JHEP10(2017)138 arXiv:1703.09435 [hep-th] Roberts and Yoshida [2017] Roberts, D.A., Yoshida, B.: Chaos and complexity by design. JHEP 04, 121 (2017) https://doi.org/10.1007/JHEP04(2017)121 arXiv:1610.04903 [quant-ph] Jefferson and Myers [2017] Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Shenker, S.H., Stanford, D.: Black holes and the butterfly effect. JHEP 03, 067 (2014) https://doi.org/10.1007/JHEP03(2014)067 arXiv:1306.0622 [hep-th] Maldacena et al. [2016] Maldacena, J., Shenker, S.H., Stanford, D.: A bound on chaos. JHEP 08, 106 (2016) https://doi.org/10.1007/JHEP08(2016)106 arXiv:1503.01409 [hep-th] Xu et al. [2020] Xu, T., Scaffidi, T., Cao, X.: Does scrambling equal chaos? Phys. Rev. Lett. 124, 140602 (2020) https://doi.org/10.1103/PhysRevLett.124.140602 Hashimoto et al. [2017] Hashimoto, K., Murata, K., Yoshii, R.: Out-of-time-order correlators in quantum mechanics. JHEP 10, 138 (2017) https://doi.org/10.1007/JHEP10(2017)138 arXiv:1703.09435 [hep-th] Roberts and Yoshida [2017] Roberts, D.A., Yoshida, B.: Chaos and complexity by design. JHEP 04, 121 (2017) https://doi.org/10.1007/JHEP04(2017)121 arXiv:1610.04903 [quant-ph] Jefferson and Myers [2017] Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Maldacena, J., Shenker, S.H., Stanford, D.: A bound on chaos. JHEP 08, 106 (2016) https://doi.org/10.1007/JHEP08(2016)106 arXiv:1503.01409 [hep-th] Xu et al. [2020] Xu, T., Scaffidi, T., Cao, X.: Does scrambling equal chaos? Phys. Rev. Lett. 124, 140602 (2020) https://doi.org/10.1103/PhysRevLett.124.140602 Hashimoto et al. [2017] Hashimoto, K., Murata, K., Yoshii, R.: Out-of-time-order correlators in quantum mechanics. JHEP 10, 138 (2017) https://doi.org/10.1007/JHEP10(2017)138 arXiv:1703.09435 [hep-th] Roberts and Yoshida [2017] Roberts, D.A., Yoshida, B.: Chaos and complexity by design. JHEP 04, 121 (2017) https://doi.org/10.1007/JHEP04(2017)121 arXiv:1610.04903 [quant-ph] Jefferson and Myers [2017] Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Xu, T., Scaffidi, T., Cao, X.: Does scrambling equal chaos? Phys. Rev. Lett. 124, 140602 (2020) https://doi.org/10.1103/PhysRevLett.124.140602 Hashimoto et al. [2017] Hashimoto, K., Murata, K., Yoshii, R.: Out-of-time-order correlators in quantum mechanics. JHEP 10, 138 (2017) https://doi.org/10.1007/JHEP10(2017)138 arXiv:1703.09435 [hep-th] Roberts and Yoshida [2017] Roberts, D.A., Yoshida, B.: Chaos and complexity by design. JHEP 04, 121 (2017) https://doi.org/10.1007/JHEP04(2017)121 arXiv:1610.04903 [quant-ph] Jefferson and Myers [2017] Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Hashimoto, K., Murata, K., Yoshii, R.: Out-of-time-order correlators in quantum mechanics. JHEP 10, 138 (2017) https://doi.org/10.1007/JHEP10(2017)138 arXiv:1703.09435 [hep-th] Roberts and Yoshida [2017] Roberts, D.A., Yoshida, B.: Chaos and complexity by design. JHEP 04, 121 (2017) https://doi.org/10.1007/JHEP04(2017)121 arXiv:1610.04903 [quant-ph] Jefferson and Myers [2017] Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Roberts, D.A., Yoshida, B.: Chaos and complexity by design. JHEP 04, 121 (2017) https://doi.org/10.1007/JHEP04(2017)121 arXiv:1610.04903 [quant-ph] Jefferson and Myers [2017] Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020)
  2. Maldacena, J., Stanford, D.: Remarks on the Sachdev-Ye-Kitaev model. Phys. Rev. D 94(10), 106002 (2016) https://doi.org/10.1103/PhysRevD.94.106002 arXiv:1604.07818 [hep-th] Marcus and Vandoren [2019] Marcus, E., Vandoren, S.: A new class of SYK-like models with maximal chaos. JHEP 01, 166 (2019) https://doi.org/10.1007/JHEP01(2019)166 arXiv:1808.01190 [hep-th] Shenker and Stanford [2014] Shenker, S.H., Stanford, D.: Black holes and the butterfly effect. JHEP 03, 067 (2014) https://doi.org/10.1007/JHEP03(2014)067 arXiv:1306.0622 [hep-th] Maldacena et al. [2016] Maldacena, J., Shenker, S.H., Stanford, D.: A bound on chaos. JHEP 08, 106 (2016) https://doi.org/10.1007/JHEP08(2016)106 arXiv:1503.01409 [hep-th] Xu et al. [2020] Xu, T., Scaffidi, T., Cao, X.: Does scrambling equal chaos? Phys. Rev. Lett. 124, 140602 (2020) https://doi.org/10.1103/PhysRevLett.124.140602 Hashimoto et al. [2017] Hashimoto, K., Murata, K., Yoshii, R.: Out-of-time-order correlators in quantum mechanics. JHEP 10, 138 (2017) https://doi.org/10.1007/JHEP10(2017)138 arXiv:1703.09435 [hep-th] Roberts and Yoshida [2017] Roberts, D.A., Yoshida, B.: Chaos and complexity by design. JHEP 04, 121 (2017) https://doi.org/10.1007/JHEP04(2017)121 arXiv:1610.04903 [quant-ph] Jefferson and Myers [2017] Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Marcus, E., Vandoren, S.: A new class of SYK-like models with maximal chaos. JHEP 01, 166 (2019) https://doi.org/10.1007/JHEP01(2019)166 arXiv:1808.01190 [hep-th] Shenker and Stanford [2014] Shenker, S.H., Stanford, D.: Black holes and the butterfly effect. JHEP 03, 067 (2014) https://doi.org/10.1007/JHEP03(2014)067 arXiv:1306.0622 [hep-th] Maldacena et al. [2016] Maldacena, J., Shenker, S.H., Stanford, D.: A bound on chaos. JHEP 08, 106 (2016) https://doi.org/10.1007/JHEP08(2016)106 arXiv:1503.01409 [hep-th] Xu et al. [2020] Xu, T., Scaffidi, T., Cao, X.: Does scrambling equal chaos? Phys. Rev. Lett. 124, 140602 (2020) https://doi.org/10.1103/PhysRevLett.124.140602 Hashimoto et al. [2017] Hashimoto, K., Murata, K., Yoshii, R.: Out-of-time-order correlators in quantum mechanics. JHEP 10, 138 (2017) https://doi.org/10.1007/JHEP10(2017)138 arXiv:1703.09435 [hep-th] Roberts and Yoshida [2017] Roberts, D.A., Yoshida, B.: Chaos and complexity by design. JHEP 04, 121 (2017) https://doi.org/10.1007/JHEP04(2017)121 arXiv:1610.04903 [quant-ph] Jefferson and Myers [2017] Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Shenker, S.H., Stanford, D.: Black holes and the butterfly effect. JHEP 03, 067 (2014) https://doi.org/10.1007/JHEP03(2014)067 arXiv:1306.0622 [hep-th] Maldacena et al. [2016] Maldacena, J., Shenker, S.H., Stanford, D.: A bound on chaos. JHEP 08, 106 (2016) https://doi.org/10.1007/JHEP08(2016)106 arXiv:1503.01409 [hep-th] Xu et al. [2020] Xu, T., Scaffidi, T., Cao, X.: Does scrambling equal chaos? Phys. Rev. Lett. 124, 140602 (2020) https://doi.org/10.1103/PhysRevLett.124.140602 Hashimoto et al. [2017] Hashimoto, K., Murata, K., Yoshii, R.: Out-of-time-order correlators in quantum mechanics. JHEP 10, 138 (2017) https://doi.org/10.1007/JHEP10(2017)138 arXiv:1703.09435 [hep-th] Roberts and Yoshida [2017] Roberts, D.A., Yoshida, B.: Chaos and complexity by design. JHEP 04, 121 (2017) https://doi.org/10.1007/JHEP04(2017)121 arXiv:1610.04903 [quant-ph] Jefferson and Myers [2017] Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Maldacena, J., Shenker, S.H., Stanford, D.: A bound on chaos. JHEP 08, 106 (2016) https://doi.org/10.1007/JHEP08(2016)106 arXiv:1503.01409 [hep-th] Xu et al. [2020] Xu, T., Scaffidi, T., Cao, X.: Does scrambling equal chaos? Phys. Rev. Lett. 124, 140602 (2020) https://doi.org/10.1103/PhysRevLett.124.140602 Hashimoto et al. [2017] Hashimoto, K., Murata, K., Yoshii, R.: Out-of-time-order correlators in quantum mechanics. JHEP 10, 138 (2017) https://doi.org/10.1007/JHEP10(2017)138 arXiv:1703.09435 [hep-th] Roberts and Yoshida [2017] Roberts, D.A., Yoshida, B.: Chaos and complexity by design. JHEP 04, 121 (2017) https://doi.org/10.1007/JHEP04(2017)121 arXiv:1610.04903 [quant-ph] Jefferson and Myers [2017] Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Xu, T., Scaffidi, T., Cao, X.: Does scrambling equal chaos? Phys. Rev. Lett. 124, 140602 (2020) https://doi.org/10.1103/PhysRevLett.124.140602 Hashimoto et al. [2017] Hashimoto, K., Murata, K., Yoshii, R.: Out-of-time-order correlators in quantum mechanics. JHEP 10, 138 (2017) https://doi.org/10.1007/JHEP10(2017)138 arXiv:1703.09435 [hep-th] Roberts and Yoshida [2017] Roberts, D.A., Yoshida, B.: Chaos and complexity by design. JHEP 04, 121 (2017) https://doi.org/10.1007/JHEP04(2017)121 arXiv:1610.04903 [quant-ph] Jefferson and Myers [2017] Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Hashimoto, K., Murata, K., Yoshii, R.: Out-of-time-order correlators in quantum mechanics. JHEP 10, 138 (2017) https://doi.org/10.1007/JHEP10(2017)138 arXiv:1703.09435 [hep-th] Roberts and Yoshida [2017] Roberts, D.A., Yoshida, B.: Chaos and complexity by design. JHEP 04, 121 (2017) https://doi.org/10.1007/JHEP04(2017)121 arXiv:1610.04903 [quant-ph] Jefferson and Myers [2017] Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Roberts, D.A., Yoshida, B.: Chaos and complexity by design. JHEP 04, 121 (2017) https://doi.org/10.1007/JHEP04(2017)121 arXiv:1610.04903 [quant-ph] Jefferson and Myers [2017] Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020)
  3. Marcus, E., Vandoren, S.: A new class of SYK-like models with maximal chaos. JHEP 01, 166 (2019) https://doi.org/10.1007/JHEP01(2019)166 arXiv:1808.01190 [hep-th] Shenker and Stanford [2014] Shenker, S.H., Stanford, D.: Black holes and the butterfly effect. JHEP 03, 067 (2014) https://doi.org/10.1007/JHEP03(2014)067 arXiv:1306.0622 [hep-th] Maldacena et al. [2016] Maldacena, J., Shenker, S.H., Stanford, D.: A bound on chaos. JHEP 08, 106 (2016) https://doi.org/10.1007/JHEP08(2016)106 arXiv:1503.01409 [hep-th] Xu et al. [2020] Xu, T., Scaffidi, T., Cao, X.: Does scrambling equal chaos? Phys. Rev. Lett. 124, 140602 (2020) https://doi.org/10.1103/PhysRevLett.124.140602 Hashimoto et al. [2017] Hashimoto, K., Murata, K., Yoshii, R.: Out-of-time-order correlators in quantum mechanics. JHEP 10, 138 (2017) https://doi.org/10.1007/JHEP10(2017)138 arXiv:1703.09435 [hep-th] Roberts and Yoshida [2017] Roberts, D.A., Yoshida, B.: Chaos and complexity by design. JHEP 04, 121 (2017) https://doi.org/10.1007/JHEP04(2017)121 arXiv:1610.04903 [quant-ph] Jefferson and Myers [2017] Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Shenker, S.H., Stanford, D.: Black holes and the butterfly effect. JHEP 03, 067 (2014) https://doi.org/10.1007/JHEP03(2014)067 arXiv:1306.0622 [hep-th] Maldacena et al. [2016] Maldacena, J., Shenker, S.H., Stanford, D.: A bound on chaos. JHEP 08, 106 (2016) https://doi.org/10.1007/JHEP08(2016)106 arXiv:1503.01409 [hep-th] Xu et al. [2020] Xu, T., Scaffidi, T., Cao, X.: Does scrambling equal chaos? Phys. Rev. Lett. 124, 140602 (2020) https://doi.org/10.1103/PhysRevLett.124.140602 Hashimoto et al. [2017] Hashimoto, K., Murata, K., Yoshii, R.: Out-of-time-order correlators in quantum mechanics. JHEP 10, 138 (2017) https://doi.org/10.1007/JHEP10(2017)138 arXiv:1703.09435 [hep-th] Roberts and Yoshida [2017] Roberts, D.A., Yoshida, B.: Chaos and complexity by design. JHEP 04, 121 (2017) https://doi.org/10.1007/JHEP04(2017)121 arXiv:1610.04903 [quant-ph] Jefferson and Myers [2017] Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Maldacena, J., Shenker, S.H., Stanford, D.: A bound on chaos. JHEP 08, 106 (2016) https://doi.org/10.1007/JHEP08(2016)106 arXiv:1503.01409 [hep-th] Xu et al. [2020] Xu, T., Scaffidi, T., Cao, X.: Does scrambling equal chaos? Phys. Rev. Lett. 124, 140602 (2020) https://doi.org/10.1103/PhysRevLett.124.140602 Hashimoto et al. [2017] Hashimoto, K., Murata, K., Yoshii, R.: Out-of-time-order correlators in quantum mechanics. JHEP 10, 138 (2017) https://doi.org/10.1007/JHEP10(2017)138 arXiv:1703.09435 [hep-th] Roberts and Yoshida [2017] Roberts, D.A., Yoshida, B.: Chaos and complexity by design. JHEP 04, 121 (2017) https://doi.org/10.1007/JHEP04(2017)121 arXiv:1610.04903 [quant-ph] Jefferson and Myers [2017] Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Xu, T., Scaffidi, T., Cao, X.: Does scrambling equal chaos? Phys. Rev. Lett. 124, 140602 (2020) https://doi.org/10.1103/PhysRevLett.124.140602 Hashimoto et al. [2017] Hashimoto, K., Murata, K., Yoshii, R.: Out-of-time-order correlators in quantum mechanics. JHEP 10, 138 (2017) https://doi.org/10.1007/JHEP10(2017)138 arXiv:1703.09435 [hep-th] Roberts and Yoshida [2017] Roberts, D.A., Yoshida, B.: Chaos and complexity by design. JHEP 04, 121 (2017) https://doi.org/10.1007/JHEP04(2017)121 arXiv:1610.04903 [quant-ph] Jefferson and Myers [2017] Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Hashimoto, K., Murata, K., Yoshii, R.: Out-of-time-order correlators in quantum mechanics. JHEP 10, 138 (2017) https://doi.org/10.1007/JHEP10(2017)138 arXiv:1703.09435 [hep-th] Roberts and Yoshida [2017] Roberts, D.A., Yoshida, B.: Chaos and complexity by design. JHEP 04, 121 (2017) https://doi.org/10.1007/JHEP04(2017)121 arXiv:1610.04903 [quant-ph] Jefferson and Myers [2017] Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Roberts, D.A., Yoshida, B.: Chaos and complexity by design. JHEP 04, 121 (2017) https://doi.org/10.1007/JHEP04(2017)121 arXiv:1610.04903 [quant-ph] Jefferson and Myers [2017] Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020)
  4. Shenker, S.H., Stanford, D.: Black holes and the butterfly effect. JHEP 03, 067 (2014) https://doi.org/10.1007/JHEP03(2014)067 arXiv:1306.0622 [hep-th] Maldacena et al. [2016] Maldacena, J., Shenker, S.H., Stanford, D.: A bound on chaos. JHEP 08, 106 (2016) https://doi.org/10.1007/JHEP08(2016)106 arXiv:1503.01409 [hep-th] Xu et al. [2020] Xu, T., Scaffidi, T., Cao, X.: Does scrambling equal chaos? Phys. Rev. Lett. 124, 140602 (2020) https://doi.org/10.1103/PhysRevLett.124.140602 Hashimoto et al. [2017] Hashimoto, K., Murata, K., Yoshii, R.: Out-of-time-order correlators in quantum mechanics. JHEP 10, 138 (2017) https://doi.org/10.1007/JHEP10(2017)138 arXiv:1703.09435 [hep-th] Roberts and Yoshida [2017] Roberts, D.A., Yoshida, B.: Chaos and complexity by design. JHEP 04, 121 (2017) https://doi.org/10.1007/JHEP04(2017)121 arXiv:1610.04903 [quant-ph] Jefferson and Myers [2017] Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Maldacena, J., Shenker, S.H., Stanford, D.: A bound on chaos. JHEP 08, 106 (2016) https://doi.org/10.1007/JHEP08(2016)106 arXiv:1503.01409 [hep-th] Xu et al. [2020] Xu, T., Scaffidi, T., Cao, X.: Does scrambling equal chaos? Phys. Rev. Lett. 124, 140602 (2020) https://doi.org/10.1103/PhysRevLett.124.140602 Hashimoto et al. [2017] Hashimoto, K., Murata, K., Yoshii, R.: Out-of-time-order correlators in quantum mechanics. JHEP 10, 138 (2017) https://doi.org/10.1007/JHEP10(2017)138 arXiv:1703.09435 [hep-th] Roberts and Yoshida [2017] Roberts, D.A., Yoshida, B.: Chaos and complexity by design. JHEP 04, 121 (2017) https://doi.org/10.1007/JHEP04(2017)121 arXiv:1610.04903 [quant-ph] Jefferson and Myers [2017] Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Xu, T., Scaffidi, T., Cao, X.: Does scrambling equal chaos? Phys. Rev. Lett. 124, 140602 (2020) https://doi.org/10.1103/PhysRevLett.124.140602 Hashimoto et al. [2017] Hashimoto, K., Murata, K., Yoshii, R.: Out-of-time-order correlators in quantum mechanics. JHEP 10, 138 (2017) https://doi.org/10.1007/JHEP10(2017)138 arXiv:1703.09435 [hep-th] Roberts and Yoshida [2017] Roberts, D.A., Yoshida, B.: Chaos and complexity by design. JHEP 04, 121 (2017) https://doi.org/10.1007/JHEP04(2017)121 arXiv:1610.04903 [quant-ph] Jefferson and Myers [2017] Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Hashimoto, K., Murata, K., Yoshii, R.: Out-of-time-order correlators in quantum mechanics. JHEP 10, 138 (2017) https://doi.org/10.1007/JHEP10(2017)138 arXiv:1703.09435 [hep-th] Roberts and Yoshida [2017] Roberts, D.A., Yoshida, B.: Chaos and complexity by design. JHEP 04, 121 (2017) https://doi.org/10.1007/JHEP04(2017)121 arXiv:1610.04903 [quant-ph] Jefferson and Myers [2017] Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Roberts, D.A., Yoshida, B.: Chaos and complexity by design. JHEP 04, 121 (2017) https://doi.org/10.1007/JHEP04(2017)121 arXiv:1610.04903 [quant-ph] Jefferson and Myers [2017] Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020)
  5. Maldacena, J., Shenker, S.H., Stanford, D.: A bound on chaos. JHEP 08, 106 (2016) https://doi.org/10.1007/JHEP08(2016)106 arXiv:1503.01409 [hep-th] Xu et al. [2020] Xu, T., Scaffidi, T., Cao, X.: Does scrambling equal chaos? Phys. Rev. Lett. 124, 140602 (2020) https://doi.org/10.1103/PhysRevLett.124.140602 Hashimoto et al. [2017] Hashimoto, K., Murata, K., Yoshii, R.: Out-of-time-order correlators in quantum mechanics. JHEP 10, 138 (2017) https://doi.org/10.1007/JHEP10(2017)138 arXiv:1703.09435 [hep-th] Roberts and Yoshida [2017] Roberts, D.A., Yoshida, B.: Chaos and complexity by design. JHEP 04, 121 (2017) https://doi.org/10.1007/JHEP04(2017)121 arXiv:1610.04903 [quant-ph] Jefferson and Myers [2017] Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Xu, T., Scaffidi, T., Cao, X.: Does scrambling equal chaos? Phys. Rev. Lett. 124, 140602 (2020) https://doi.org/10.1103/PhysRevLett.124.140602 Hashimoto et al. [2017] Hashimoto, K., Murata, K., Yoshii, R.: Out-of-time-order correlators in quantum mechanics. JHEP 10, 138 (2017) https://doi.org/10.1007/JHEP10(2017)138 arXiv:1703.09435 [hep-th] Roberts and Yoshida [2017] Roberts, D.A., Yoshida, B.: Chaos and complexity by design. JHEP 04, 121 (2017) https://doi.org/10.1007/JHEP04(2017)121 arXiv:1610.04903 [quant-ph] Jefferson and Myers [2017] Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Hashimoto, K., Murata, K., Yoshii, R.: Out-of-time-order correlators in quantum mechanics. JHEP 10, 138 (2017) https://doi.org/10.1007/JHEP10(2017)138 arXiv:1703.09435 [hep-th] Roberts and Yoshida [2017] Roberts, D.A., Yoshida, B.: Chaos and complexity by design. JHEP 04, 121 (2017) https://doi.org/10.1007/JHEP04(2017)121 arXiv:1610.04903 [quant-ph] Jefferson and Myers [2017] Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Roberts, D.A., Yoshida, B.: Chaos and complexity by design. JHEP 04, 121 (2017) https://doi.org/10.1007/JHEP04(2017)121 arXiv:1610.04903 [quant-ph] Jefferson and Myers [2017] Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020)
  6. Xu, T., Scaffidi, T., Cao, X.: Does scrambling equal chaos? Phys. Rev. Lett. 124, 140602 (2020) https://doi.org/10.1103/PhysRevLett.124.140602 Hashimoto et al. [2017] Hashimoto, K., Murata, K., Yoshii, R.: Out-of-time-order correlators in quantum mechanics. JHEP 10, 138 (2017) https://doi.org/10.1007/JHEP10(2017)138 arXiv:1703.09435 [hep-th] Roberts and Yoshida [2017] Roberts, D.A., Yoshida, B.: Chaos and complexity by design. JHEP 04, 121 (2017) https://doi.org/10.1007/JHEP04(2017)121 arXiv:1610.04903 [quant-ph] Jefferson and Myers [2017] Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Hashimoto, K., Murata, K., Yoshii, R.: Out-of-time-order correlators in quantum mechanics. JHEP 10, 138 (2017) https://doi.org/10.1007/JHEP10(2017)138 arXiv:1703.09435 [hep-th] Roberts and Yoshida [2017] Roberts, D.A., Yoshida, B.: Chaos and complexity by design. JHEP 04, 121 (2017) https://doi.org/10.1007/JHEP04(2017)121 arXiv:1610.04903 [quant-ph] Jefferson and Myers [2017] Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Roberts, D.A., Yoshida, B.: Chaos and complexity by design. JHEP 04, 121 (2017) https://doi.org/10.1007/JHEP04(2017)121 arXiv:1610.04903 [quant-ph] Jefferson and Myers [2017] Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020)
  7. Hashimoto, K., Murata, K., Yoshii, R.: Out-of-time-order correlators in quantum mechanics. JHEP 10, 138 (2017) https://doi.org/10.1007/JHEP10(2017)138 arXiv:1703.09435 [hep-th] Roberts and Yoshida [2017] Roberts, D.A., Yoshida, B.: Chaos and complexity by design. JHEP 04, 121 (2017) https://doi.org/10.1007/JHEP04(2017)121 arXiv:1610.04903 [quant-ph] Jefferson and Myers [2017] Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Roberts, D.A., Yoshida, B.: Chaos and complexity by design. JHEP 04, 121 (2017) https://doi.org/10.1007/JHEP04(2017)121 arXiv:1610.04903 [quant-ph] Jefferson and Myers [2017] Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020)
  8. Roberts, D.A., Yoshida, B.: Chaos and complexity by design. JHEP 04, 121 (2017) https://doi.org/10.1007/JHEP04(2017)121 arXiv:1610.04903 [quant-ph] Jefferson and Myers [2017] Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020)
  9. Jefferson, R., Myers, R.C.: Circuit complexity in quantum field theory. JHEP 10, 107 (2017) https://doi.org/10.1007/JHEP10(2017)107 arXiv:1707.08570 [hep-th] Rabinovici et al. [2021] Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020)
  10. Rabinovici, E., Sánchez-Garrido, A., Shir, R., Sonner, J.: Operator complexity: a journey to the edge of Krylov space. JHEP 06, 062 (2021) https://doi.org/10.1007/JHEP06(2021)062 arXiv:2009.01862 [hep-th] Caputa et al. [2022] Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020)
  11. Caputa, P., Magan, J.M., Patramanis, D.: Geometry of Krylov complexity. Phys. Rev. Res. 4(1), 013041 (2022) https://doi.org/10.1103/PhysRevResearch.4.013041 arXiv:2109.03824 [hep-th] Kolovsky and Buchleitner [2004] Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020)
  12. Kolovsky, A.R., Buchleitner, A.: Quantum chaos in the Bose-Hubbard model. EPL (Europhysics Letters) 68(5), 632–638 (2004) https://doi.org/10.1209/epl/i2004-10265-7 arXiv:cond-mat/0403213 [cond-mat.soft] Kollath et al. [2010] Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020)
  13. Kollath, C., Roux, G., Biroli, G., Läuchli, A.M.: Statistical properties of the spectrum of the extended bose–hubbard model. Journal of Statistical Mechanics: Theory and Experiment 2010(08), 08011 (2010) https://doi.org/10.1088/1742-5468/2010/08/P08011 Kolovsky [2016] Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020)
  14. Kolovsky, A.R.: Bose-Hubbard Hamiltonian: Quantum chaos approach. International Journal of Modern Physics B 30(10), 1630009 (2016) https://doi.org/10.1142/S0217979216300097 arXiv:1507.03413 [quant-ph] Pausch et al. [2021] Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020)
  15. Pausch, L., Carnio, E.G., Buchleitner, A., Rodríguez, A.: Chaos in the Bose–Hubbard model and random two-body Hamiltonians. New J. Phys. 23(12), 123036 (2021) https://doi.org/10.1088/1367-2630/ac3c0d arXiv:2109.06236 [quant-ph] Richaud and Penna [2018] Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020)
  16. Richaud, A., Penna, V.: Phase separation can be stronger than chaos. New Journal of Physics 20(10), 105008 (2018) https://doi.org/10.1088/1367-2630/aae73e Ferrari et al. [2023] Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020)
  17. Ferrari, F., Gravina, L., Eeltink, D., Scarlino, P., Savona, V., Minganti, F.: Transient and steady-state quantum chaos in driven-dissipative bosonic systems (2023) Marković and Čubrović [2023] Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020)
  18. Marković, D., Čubrović, M.: Chaos and anomalous transport in a semiclassical bose-hubbard chain (2023) arXiv:2308.14720 Polkovnikov [2003] Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020)
  19. Polkovnikov, A.: Evolution of the macroscopically entangled states in optical lattices. Phys. Rev. A 68, 033609 (2003) https://doi.org/10.1103/PhysRevA.68.033609 Nakerst and Haque [2023] Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020)
  20. Nakerst, G., Haque, M.: Chaos in the three-site Bose-Hubbard model: Classical versus quantum. Phys. Rev. E 107(2), 024210 (2023) https://doi.org/10.1103/PhysRevE.107.024210 arXiv:2203.09953 [quant-ph] Zaslavsky [2002] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020)
  21. Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Physics Reports 371(6), 461–580 (2002) https://doi.org/10.1016/S0370-1573(02)00331-9 Zaslavsky [2007] Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020)
  22. Zaslavsky, G.M.: The Physics of Chaos in Hamiltonian Systems. Imperial College Press, ??? (2007). https://books.google.nl/books?id=W9FKkQCac8IC Polkovnikov et al. [2002] Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020)
  23. Polkovnikov, A., Sachdev, S., Girvin, S.M.: Nonequilibrium gross-pitaevskii dynamics of boson lattice models. Phys. Rev. A 66, 053607 (2002) https://doi.org/10.1103/PhysRevA.66.053607 Polkovnikov [2003] Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020)
  24. Polkovnikov, A.: Quantum corrections to the dynamics of interacting bosons: Beyond the truncated wigner approximation. Phys. Rev. A 68, 053604 (2003) https://doi.org/10.1103/PhysRevA.68.053604 Lichtenberg and Lieberman [1989] Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020)
  25. Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Applied Mathematical Sciences. Springer, ??? (1989). https://books.google.nl/books?id=IOb5vQAACAAJ Metzler and Klafter [2000] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020)
  26. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 339(1), 1–77 (2000) https://doi.org/10.1016/S0370-1573(00)00070-3 Zaslavsky [1994] Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020)
  27. Zaslavsky, G.: Fractional kinetic equation for hamiltonian chaos. Physica D: Nonlinear Phenomena 76, 110–122 (1994) Rizzatti et al. [2020] Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020) Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020)
  28. Rizzatti, E.O., Barbosa, M.A.A., Barbosa, M.C.: Double-peak specific heat anomaly and correlations in the bose-hubbard model. arXiv preprint arXiv:2010.06560 (2020)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 0 likes.