Neutrino Mass Measurement with Cosmic Gravitational Focusing (2312.16972v2)
Abstract: We thoroughly explore the cosmic gravitational focusing of cosmic neutrino fluid (C$\nu$F) by dark matter (DM) halo using both general relativity for a point source of gravitational potential and Boltzmann equations for continuous overdensities. Derived in the general way for both relativistic and non-relativistic neutrinos, our results show that the effect has fourth power dependence on the neutrino mass and temperature. With nonlinear mass dependence which is different from the cosmic microwave background (CMB) and large scale structure (LSS) observations, the cosmic gravitational focusing can provide an independent cosmological way of measuring the neutrino mass and ordering. We take DESI as an example to illustrate that the projected sensitivity as well as its synergy with existing terrestrial neutrino oscillation experiments and other cosmological observations can significantly improve the neutrino mass measurement.
- W. Pauli, “On the Earlier and more recent history of the neutrino,” pages 193-217 of “Writings on Physics and Philosophy”, 978-3-54-056859-9, 978-0-387-56859-1, 978-3-64-208163-7, 978-3-66-202994-7, Springer-Verlag, January 1994.
- W. F. Hornyak, T. Lauritsen, P. Morrison, and W. A. Fowler, “Energy levels of light nuclei. iii,” Rev. Mod. Phys. 22 (Oct, 1950) 291–372.
- L. Langer and R. Moffat, “The beta-spectrum of tritium and the mass of the neutrino,” Phys. Rev. 88 no. 4, (1952) 689.
- J. A. Formaggio, A. L. C. de Gouvêa, and R. G. H. Robertson, “Direct Measurements of Neutrino Mass,” Phys. Rept. 914 (2021) 1–54, [ arXiv:2102.00594 [nucl-ex]].
- KATRIN Collaboration, A. Osipowicz et al., “KATRIN: A Next generation tritium beta decay experiment with sub-eV sensitivity for the electron neutrino mass. Letter of intent,” [ arXiv:hep-ex/0109033].
- KATRIN Collaboration, M. Aker et al., “Direct neutrino-mass measurement with sub-electronvolt sensitivity,” Nature Phys. 18 no. 2, (2022) 160–166, [ arXiv:2105.08533 [hep-ex]].
- Particle Data Group Collaboration, R. L. Workman et al., “Review of Particle Physics,” PTEP 2022 (2022) 083C01.
- KATRIN Collaboration, J. Angrik et al., “KATRIN design report 2004,”.
- Super-Kamiokande Collaboration, Y. Fukuda et al., “Evidence for oscillation of atmospheric neutrinos,” Phys. Rev. Lett. 81 (1998) 1562–1567, [ arXiv:hep-ex/9807003].
- SNO Collaboration, Q. R. Ahmad et al., “Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory,” Phys. Rev. Lett. 89 (2002) 011301, [ arXiv:nucl-ex/0204008].
- Shao-Feng Ge and Stephen J. Parke, “Scalar Nonstandard Interactions in Neutrino Oscillation,” Phys. Rev. Lett. 122, no.21, 211801 (2019) [arXiv:1812.08376 [hep-ph]].
- Shao-Feng Ge and Hitoshi Murayama, “Apparent CPT Violation in Neutrino Oscillation from Dark Non-Standard Interactions,” [arXiv:1904.02518 [hep-ph]]; Shao-Feng Ge, “The Leptonic CP Measurement and New Physics Alternatives,” PoS NuFact2019, 108 (2020) (slides); Shao-Feng Ge, “New Physics with Scalar and Dark Non-Standard Interactions in Neutrino Oscillation,” J. Phys. Conf. Ser. 1468, no.1, 012125 (2020).
- K. Y. Choi, E. J. Chun and J. Kim, “Neutrino Oscillations in Dark Matter,” Phys. Dark Univ. 30, 100606 (2020) [arXiv:1909.10478 [hep-ph]].
- K. Y. Choi, E. J. Chun and J. Kim, “Dispersion of neutrinos in a medium,” [arXiv:2012.09474 [hep-ph]].
- M. Sen and A. Y. Smirnov, “Refractive neutrino masses, ultralight dark matter and cosmology,” [arXiv:2306.15718 [hep-ph]].
- P. F. de Salas, D. V. Forero, C. A. Ternes, M. Tortola, and J. W. F. Valle, “Status of neutrino oscillations 2018: 3σ𝜎\sigmaitalic_σ hint for normal mass ordering and improved CP sensitivity,” Phys. Lett. B 782 (2018) 633–640, [ arXiv:1708.01186 [hep-ph]].
- F. Capozzi, E. Lisi, A. Marrone, and A. Palazzo, “Current unknowns in the three neutrino framework,” Prog. Part. Nucl. Phys. 102 (2018) 48–72, [ arXiv:1804.09678 [hep-ph]].
- I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, T. Schwetz, and A. Zhou, “The fate of hints: updated global analysis of three-flavor neutrino oscillations,” JHEP 09 (2020) 178, [ arXiv:2007.14792 [hep-ph]].
- JUNO Collaboration, F. An et al., “Neutrino Physics with JUNO,” J. Phys. G 43 no. 3, (2016) 030401, [ arXiv:1507.05613 [physics.ins-det]].
- JUNO Collaboration, Z. Djurcic et al., “JUNO Conceptual Design Report,” [ arXiv:1508.07166 [physics.ins-det]].
- S. T. Petcov and M. Piai, “The LMA MSW solution of the solar neutrino problem, inverted neutrino mass hierarchy and reactor neutrino experiments,” Phys. Lett. B 533 (2002) 94–106, [ arXiv:hep-ph/0112074].
- S. Choubey, S. T. Petcov, and M. Piai, “Precision neutrino oscillation physics with an intermediate baseline reactor neutrino experiment,” Phys. Rev. D 68 (2003) 113006, [ arXiv:hep-ph/0306017].
- J. Learned, S. T. Dye, S. Pakvasa, and R. C. Svoboda, “Determination of neutrino mass hierarchy and theta(13) with a remote detector of reactor antineutrinos,” Phys. Rev. D 78 (2008) 071302, [ arXiv:hep-ex/0612022].
- L. Zhan, Y. Wang, J. Cao, and L. Wen, “Determination of the Neutrino Mass Hierarchy at an Intermediate Baseline,” Phys. Rev. D 78 (2008) 111103, [ arXiv:0807.3203 [hep-ex]].
- L. Zhan, Y. Wang, J. Cao, and L. Wen, “Experimental Requirements to Determine the Neutrino Mass Hierarchy Using Reactor Neutrinos,” Phys. Rev. D 79 (2009) 073007, [ arXiv:0901.2976 [hep-ex]].
- X. Qian, D. A. Dwyer, R. D. McKeown, P. Vogel, W. Wang, and C. Zhang, “Mass Hierarchy Resolution in Reactor Anti-neutrino Experiments: Parameter Degeneracies and Detector Energy Response,” Phys. Rev. D 87 no. 3, (2013) 033005, [ arXiv:1208.1551 [physics.ins-det]].
- Shao-Feng Ge, K. Hagiwara, N. Okamura, and Y. Takaesu, “Determination of mass hierarchy with medium baseline reactor neutrino experiments,” JHEP 05 (2013) 131, [ arXiv:1210.8141 [hep-ph]].
- X. Qian, A. Tan, W. Wang, J. J. Ling, R. D. McKeown, and C. Zhang, “Statistical Evaluation of Experimental Determinations of Neutrino Mass Hierarchy,” Phys. Rev. D 86 (2012) 113011, [ arXiv:1210.3651 [hep-ph]].
- JUNO Collaboration, J. Zhang, “JUNO Oscillation Physics,” J. Phys. Conf. Ser. 2156 no. 1, (2021) 012110, [ arXiv:2111.10112 [physics.ins-det]].
- W. H. Furry, “On transition probabilities in double beta-disintegration,” Phys. Rev. 56 (1939) 1184–1193.
- M. Agostini, G. Benato, J. A. Detwiler, J. Menéndez, and F. Vissani, “Toward the discovery of matter creation with neutrinoless β𝛽\betaitalic_ββ𝛽\betaitalic_β decay,” Rev. Mod. Phys. 95 no. 2, (2023) 025002, [ arXiv:2202.01787 [hep-ex]].
- M. J. Dolinski, A. W. P. Poon, and W. Rodejohann, “Neutrinoless Double-Beta Decay: Status and Prospects,” Ann. Rev. Nucl. Part. Sci. 69 (2019) 219–251, [ arXiv:1902.04097 [nucl-ex]].
- KamLAND-Zen Collaboration, A. Gando et al., “Search for Majorana Neutrinos near the Inverted Mass Hierarchy Region with KamLAND-Zen,” Phys. Rev. Lett. 117 no. 8, (2016) 082503, [ arXiv:1605.02889 [hep-ex]]. [Addendum: Phys.Rev.Lett. 117, 109903 (2016)].
- GERDA Collaboration, M. Agostini et al., “Final Results of GERDA on the Search for Neutrinoless Double-β𝛽\betaitalic_β Decay,” Phys. Rev. Lett. 125 no. 25, (2020) 252502, [ arXiv:2009.06079 [nucl-ex]].
- Shao-Feng Ge and Werner Rodejohann, “JUNO and Neutrinoless Double Beta Decay,” Phys. Rev. D 92 no. 9, (2015) 093006, [ arXiv:1507.05514 [hep-ph]].
- Shao-Feng Ge and Manfred Lindner, “Extracting Majorana properties from strong bounds on neutrinoless double beta decay,” Phys. Rev. D 95 no. 3, (2017) 033003, [ arXiv:1608.01618 [hep-ph]].
- J. Cao, G.-Y. Huang, Y.-F. Li, Y. Wang, L.-J. Wen, Z.-Z. Xing, Z.-H. Zhao, and S. Zhou, “Towards the meV limit of the effective neutrino mass in neutrinoless double-beta decays,” Chin. Phys. C 44 no. 3, (2020) 031001, [ arXiv:1908.08355 [hep-ph]].
- Shao-Feng Ge and Jing-Yu Zhu, “Phenomenological Advantages of the Normal Neutrino Mass Ordering,” Chin. Phys. C 44 no. 8, (2020) 083103, [ arXiv:1910.02666 [hep-ph]].
- Academic press, 2020. ISBN: 978-0128159484.
- B. Hernandez-Molinero, R. Jimenez, and C. Pena-Garay, “Distinguishing Dirac vs. Majorana neutrinos: a cosmological probe,” JCAP 08 no. 08, (2022) 038, [ arXiv:2205.00808 [hep-ph]].
- PTOLEMY Collaboration, E. Baracchini et al., “PTOLEMY: A Proposal for Thermal Relic Detection of Massive Neutrinos and Directional Detection of MeV Dark Matter,” [ arXiv:1808.01892 [physics.ins-det]].
- PTOLEMY Collaboration, M. G. Betti et al., “Neutrino physics with the PTOLEMY project: active neutrino properties and the light sterile case,” JCAP 07 (2019) 047, [ arXiv:1902.05508 [astro-ph.CO]].
- J. Alvey, M. Escudero, N. Sabti, and T. Schwetz, “Cosmic neutrino background detection in large-neutrino-mass cosmologies,” Phys. Rev. D 105 no. 6, (2022) 063501, [ arXiv:2111.14870 [hep-ph]].
- V. A. S. V. Bittencourt, A. E. Bernardini and M. Blasone, “Chiral oscillations in the non-relativistic regime,” Eur. Phys. J. C 81, no.5, 411 (2021) [arXiv:2009.00084 [hep-ph]].
- Shao-Feng Ge and Pedro Pasquini, “Parity violation and chiral oscillation of cosmological relic neutrinos,” Phys. Lett. B 811, 135961 (2020) [arXiv:2009.01684 [hep-ph]].
- M. Yoshimura, “Neutrino Pair Emission from Excited Atoms,” Phys. Rev. D 75, 113007 (2007) [arXiv:hep-ph/0611362 [hep-ph]].
- T. Hiraki, H. Hara, Y. Miyamoto, K. Imamura, T. Masuda, N. Sasao, S. Uetake, A. Yoshimi, K. Yoshimura and M. Yoshimura, “Coherent two-photon emission from hydrogen molecules excited by counter-propagating laser pulses,” J. Phys. B 52, no.4, 045401 (2019) [ arXiv:1806.04005 [physics.atom-ph]].
- M. Tashiro, B. P. Das, J. Ekman, P. Jönsson, N. Sasao and M. Yoshimura, “Macro-coherent radiative emission of neutrino pair between parity-even atomic states,” Eur. Phys. J. C 79, no.11, 907 (2019) [arXiv:1911.01639 [hep-ph]].
- M. Yoshimura, “Solitons and Precision Neutrino Mass Spectroscopy,” Phys. Lett. B 699, 123-128 (2011) [ arXiv:1101.2749 [hep-ph]].
- M. Yoshimura, N. Sasao and M. Tanaka, “Dynamics of paired superradiance,” Phys. Rev. A 86, 013812 (2012) [ arXiv:1203.5394 [quant-ph]].
- Shao-Feng Ge and Pedro Pasquini, “Probing light mediators in the radiative emission of neutrino pair,” Eur. Phys. J. C 82, no.3, 208 (2022) [arXiv:2110.03510 [hep-ph]].
- Shao-Feng Ge and Pedro Pasquini, “Unique probe of neutrino electromagnetic moments with radiative pair emission,” Phys. Lett. B 841, 137911 (2023) [arXiv:2206.11717 [hep-ph]].
- Shao-Feng Ge and Pedro Pasquini, “Disentangle Neutrino Electromagnetic Properties with Atomic Radiative Pair Emission,” [arXiv:2306.12953 [hep-ph]].
- M. Yoshimura, A. Fukumi, N. Sasao and T. Yamaguchi, “Parity violating observables in radiative neutrino pair emission from metastable atoms,” Prog. Theor. Phys. 123, 523-532 (2010) [arXiv:0907.0519 [hep-ph]].
- D. N. Dinh, S. T. Petcov, N. Sasao, M. Tanaka, and M. Yoshimura, “Observables in Neutrino Mass Spectroscopy Using Atoms,” Phys. Lett. B 719 (2013) 154–163, [ arXiv:1209.4808 [hep-ph]].
- N. Song, R. Boyero Garcia, J. J. Gomez-Cadenas, M. C. Gonzalez-Garcia, A. Peralta Conde, and J. Taron, “Conditions for Statistical Determination of the Neutrino Mass Spectrum in Radiative Emission of Neutrino Pairs in Atoms,” Phys. Rev. D 93 no. 1, (2016) 013020, [ arXiv:1510.00421 [hep-ph]].
- J. Zhang and S. Zhou, “Improved Statistical Determination of Absolute Neutrino Masses via Radiative Emission of Neutrino Pairs from Atoms,” Phys. Rev. D 93 no. 11, (2016) 113020, [ arXiv:1604.08008 [hep-ph]].
- G. T. Zatsepin, “On the possibility of determining the upper limit of the neutrino mass by means of the flight time,” Pisma Zh. Eksp. Teor. Fiz. 8 (1968) 333–334.
- Hyper-Kamiokande Collaboration, K. Abe et al., “Hyper-Kamiokande Design Report,” [ arXiv:1805.04163 [physics.ins-det]].
- T. J. Loredo and D. Q. Lamb, “Bayesian analysis of neutrinos observed from supernova SN-1987A,” Phys. Rev. D 65 (2002) 063002, [ arXiv:astro-ph/0107260].
- J.-S. Lu, J. Cao, Y.-F. Li, and S. Zhou, “Constraining Absolute Neutrino Masses via Detection of Galactic Supernova Neutrinos at JUNO,” JCAP 05 (2015) 044, [ arXiv:1412.7418 [hep-ph]].
- F. Pompa, F. Capozzi, O. Mena, and M. Sorel, “Absolute ν𝜈\nuitalic_ν Mass Measurement with the DUNE Experiment,” Phys. Rev. Lett. 129 no. 12, (2022) 121802, [ arXiv:2203.00024 [hep-ph]].
- J. Lesgourgues and S. Pastor, “Massive neutrinos and cosmology,” Phys. Rept. 429 (2006) 307–379, [ arXiv:astro-ph/0603494].
- A. Boyle and E. Komatsu, “Deconstructing the neutrino mass constraint from galaxy redshift surveys,” JCAP 03 (2018) 035, [ arXiv:1712.01857 [astro-ph.CO]].
- M. Lattanzi and M. Gerbino, “Status of neutrino properties and future prospects - Cosmological and astrophysical constraints,” Front. in Phys. 5 (2018) 70, [ arXiv:1712.07109 [astro-ph.CO]].
- Planck Collaboration, N. Aghanim et al., “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys. 641 (2020) A6, [ arXiv:1807.06209 [astro-ph.CO]]. [Erratum: Astron.Astrophys. 652, C4 (2021)].
- DES Collaboration, T. M. C. Abbott et al., “Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and weak lensing,” Phys. Rev. D 105 no. 2, (2022) 023520, [ arXiv:2105.13549 [astro-ph.CO]].
- H.-M. Zhu, U.-L. Pen, X. Chen, D. Inman, and Y. Yu, “Measurement of Neutrino Masses from Relative Velocities,” Phys. Rev. Lett. 113 (2014) 131301, [ arXiv:1311.3422 [astro-ph.CO]].
- C. Okoli, M. I. Scrimgeour, N. Afshordi, and M. J. Hudson, “Dynamical friction in the primordial neutrino sea,” Mon. Not. Roy. Astron. Soc. 468 no. 2, (2017) 2164–2175, [ arXiv:1611.04589 [astro-ph.CO]].
- DESI Collaboration, A. Aghamousa et al., “The DESI Experiment Part I: Science,Targeting, and Survey Design,” [ arXiv:1611.00036 [astro-ph.IM]].
- DESI Collaboration, A. Dey et al., “Overview of the DESI Legacy Imaging Surveys,” Astron. J. 157 no. 5, (2019) 168, [ arXiv:1804.08657 [astro-ph.IM]].
- DESI Collaboration, G. Adame et al., “The Early Data Release of the Dark Energy Spectroscopic Instrument,” [ arXiv:2306.06308 [astro-ph.CO]].
- EUCLID Collaboration, R. Laureijs et al., “Euclid Definition Study Report,” [ arXiv:1110.3193 [astro-ph.CO]].
- Y. Cao et al., “Testing photometric redshift measurements with filter definition of the chinese space station optical survey (css-os),” Mon. Not. Roy. Astron. Soc. 480 no. 2, (2018) 2178–2190.
- Y. Cao, Y. Gong, D. Liu, A. Cooray, C. Feng, and X. Chen, “Anisotropies of cosmic optical and near-ir background from the china space station telescope (csst),” Mon. Not. Roy. Astron. Soc. 511 no. 2, (2022) 1830–1840.
- Y. Cao, Y. Gong, Z.-Y. Zheng, and C. Xu, “ Calibrating photometric redshift measurements with the multi-channel imager (mci) of the china space station telescope (csst),” Res. Astron. Astrophys. 22 no. 2, (2022) 025019.
- Scott Dodelson, “Gravitational Lensing,” June 2017, Cambridge: Cambridge University Press, Hardcopy ISBN: 9781107129764, eBook ISBN 9781316424254.
- Arthur B. Congdon and Charles R. Keeton, “Principles of Gravitational Lensing: Light Deflection as a Probe of Astrophysics and Cosmology,” December 2018, Springer Praxis Books, Hardcover ISBN 978-3-030-02121-4, eBook ISBN 978-3-030-02122-1.
- Massimo Meneghetti, “Introduction to Gravitational Lensing With Python Examples,” Lecture Notes in Physics Vol. 956, Springer, Hardcopy ISBN 978-3-030-73581-4, eBook ISBN 978-3-030-73582-1.
- K. Griest, “Effect of the Sun’s Gravity on the Distribution and Detection of Dark Matter Near the Earth,” Phys. Rev. D 37, 2703 (1988).
- P. Sikivie and S. Wick, “Solar wakes of dark matter flows,” Phys. Rev. D 66, 023504 (2002) [arXiv:astro-ph/0203448 [astro-ph]].
- S. K. Lee, M. Lisanti, A. H. G. Peter and B. R. Safdi, “Effect of Gravitational Focusing on Annual Modulation in Dark-Matter Direct-Detection Experiments,” Phys. Rev. Lett. 112, no.1, 011301 (2014) [arXiv:1308.1953 [astro-ph.CO]].
- N. Bozorgnia and T. Schwetz, “Is the effect of the Sun’s gravitational potential on dark matter particles observable?,” JCAP 08, 013 (2014) [arXiv:1405.2340 [astro-ph.CO]].
- S. Chandrasekhar, “Dynamical Friction. I. General Considerations: the Coefficient of Dynamical Friction.,” Astrophys.J. 97 (Mar., 1943) 255.
- D. P. O’Brien, A. Morbidelli, and H. F. Levison, “Terrestrial planet formation with strong dynamical friction,” Icarus 184 no. 1, (Sept., 2006) 39–58.
- S. S. Kim and M. Morris, “Dynamical Friction on Star Clusters near the Galactic Center,” Astrophys.J. 597 no. 1, (Nov., 2003) 312–322, [ arXiv:astro-ph/0307271 [astro-ph]].
- C. Struck, “Galaxy collisions.,” Phys.Rept. 321 (Jan., 1999) 1–137, [ arXiv:astro-ph/9908269 [astro-ph]].
- S. Weinberg, The Quantum theory of fields. Vol. 1: Foundations. Cambridge University Press, 6, 2005. Chapter 3.1.
- M. LoVerde, “Halo bias in mixed dark matter cosmologies,” Phys. Rev. D 90 no. 8, (2014) 083530, [ arXiv:1405.4855 [astro-ph.CO]].
- M. S. Alenazi and P. Gondolo, “Phase-space distribution of unbound dark matter near the Sun,” Phys. Rev. D 74, 083518 (2006) [arXiv:astro-ph/0608390 [astro-ph]].
- F. Bernardeau, S. Colombi, E. Gaztanaga and R. Scoccimarro, “Large scale structure of the universe and cosmological perturbation theory,” Phys. Rept. 367 (2002), 1-248 [arXiv:astro-ph/0112551 [astro-ph.CO]].
- P. McDonald, “Gravitational redshift and other redshift-space distortions of the imaginary part of the power spectrum,” JCAP 11 (2009) 026, [ arXiv:0907.5220 [astro-ph.CO]].
- D. Tseliakhovich and C. Hirata, “Relative velocity of dark matter and baryonic fluids and the formation of the first structures,” Phys. Rev. D 82 (2010) 083520, [ arXiv:1005.2416 [astro-ph.CO]].
- J. Yoo and U. Seljak, “Signatures of first stars in galaxy surveys: Multitracer analysis of the supersonic relative velocity effect and the constraints from the BOSS power spectrum measurements,” Phys. Rev. D 88 no. 10, (2013) 103520, [ arXiv:1308.1401 [astro-ph.CO]].
- A. Smith, S. Cole, C. Baugh, Z. Zheng, R. Angulo, P. Norberg, and I. Zehavi, “A Lightcone Catalogue from the Millennium-XXL Simulation,” Mon. Not. Roy. Astron. Soc. 470 no. 4, (2017) 4646–4661, [ arXiv:1701.06581 [astro-ph.CO]].
- A. Smith, S. Cole, C. Grove, P. Norberg, and P. Zarrouk, “A light-cone catalogue from the Millennium-XXL simulation: improved spatial interpolation and colour distributions for the DESI BGS,” Mon. Not. Roy. Astron. Soc. 516 no. 3, (2022) 4529–4542, [ arXiv:2207.04902 [astro-ph.CO]].
- W. H. Press and P. Schechter, “Formation of galaxies and clusters of galaxies by selfsimilar gravitational condensation,” Astrophys. J. 187, 425-438 (1974)
- Cambridge University Press, 2010.
- A. V. Kravtsov, A. A. Berlind, R. H. Wechsler, A. A. Klypin, S. Gottloeber, B. Allgood, and J. R. Primack, “The Dark side of the halo occupation distribution,” Astrophys. J. 609 (2004) 35–49, [ arXiv:astro-ph/0308519].
- S. Murray, C. Power, and A. S. G. Robotham, “HMFcalc: An online tool for calculating dark matter halo mass functions,” Astron. Comput. 3-4 (2013) 23–34, [arXiv:1306.6721 [astro-ph.CO]].
- S. G. Murray, B. Diemer, Z. Chen, A. G. Neuhold, M. A. Schnapp, T. Peruzzi, D. Blevins, and T. Engelman, “TheHaloMod: An online calculator for the halo model,” Astron. Comput. 36 (2021) 100487, [ arXiv:2009.14066 [astro-ph.CO]].
- R. K. Sheth, H. J. Mo, and G. Tormen, “Ellipsoidal collapse and an improved model for the number and spatial distribution of dark matter haloes,” Mon. Not. Roy. Astron. Soc. 323 (2001) 1, [ arXiv:astro-ph/9907024].
- SDSS Collaboration, I. Zehavi et al., “Galaxy Clustering in the Completed SDSS Redshift Survey: The Dependence on Color and Luminosity,” Astrophys. J. 736 (2011) 59–88, [ arXiv:1005.2413 [astro-ph.CO]].
- P. Schechter, “An analytic expression for the luminosity function for galaxies,” Astrophys. J. 203 (1976) 297–306.
- SDSS Collaboration, M. R. Blanton et al., “The Galaxy luminosity function and luminosity density at redshift z = 0.1” Astrophys. J. 592 (2003) 819–838, [ arXiv:astro-ph/0210215].
- D. Ginzburg and V. Desjacques, “Shot noise in multitracer constraints on fNL and relativistic projections: Power spectrum,” Mon. Not. Roy. Astron. Soc. 495, no.1, 932-942 (2020) [arXiv:1911.11701 [astro-ph.CO]].
- R. K. Sheth and G. Tormen, “Large scale bias and the peak background split,” Mon. Not. Roy. Astron. Soc. 308 (1999) 119, [ arXiv:astro-ph/9901122].
- A. Vale and J. P. Ostriker, “Linking halo mass to galaxy luminosity,” Mon. Not. Roy. Astron. Soc. 353, 189 (2004) [arXiv:astro-ph/0402500 [astro-ph]].
- X. H. Yang, H. J. Mo, Y. P. Jing and F. C. van den Bosch, “Galaxy occupation statistics of dark matter haloes: Observational results,” Mon. Not. Roy. Astron. Soc. 358, 217-232 (2005) [arXiv:astro-ph/0410114 [astro-ph]].
- X. Yang, H. J. Mo, F. C. v. d. Bosch, A. Pasquali, C. Li, and M. Barden, “Galaxy Groups in the SDSS DR4: I. The Catalogue and Basic Properties,” Astrophys. J. 671 (2007) 153–170, [ arXiv:0707.4640 [astro-ph]].
- X. Yang et al., “An Extended Halo-based Group/Cluster finder: application to the DESI legacy imaging surveys DR8,” Astrophys. J. 909 no. 2, (2021) 143, [ arXiv:2012.14998 [astro-ph.GA]].
- V. Desjacques, D. Jeong and F. Schmidt, “Large-Scale Galaxy Bias,” Phys. Rept. 733, 1-193 (2018) [arXiv:1611.09787 [astro-ph.CO]].
- N. Mostek, A. L. Coil, M. Cooper, M. Davis, J. A. Newman, and B. J. Weiner, “The deep2 galaxy redshift survey: Clustering dependence on galaxy stellar mass and star formation rate at z∼1similar-to𝑧1z\sim 1italic_z ∼ 1,” The Astrophysical Journal 767 no. 1, (Mar., 2013) 89, [ arXiv:1210.6694 [astro-ph.CO]].
- N. P. Ross, Y. Shen, M. A. Strauss, D. E. Vanden Berk, A. J. Connolly, G. T. Richards, D. P. Schneider, D. H. Weinberg, P. B. Hall, N. A. Bahcall, and R. J. Brunner, “Clustering of low-redshift (z≤2.2𝑧2.2z\leq 2.2italic_z ≤ 2.2) quasars from the sloan digital sky survey,” The Astrophysical Journal 697 no. 2, (May, 2009) 1634–1655, [ arXiv:0903.3230 [astro-ph.CO]].
- H. Zhan, “Consideration for a large-scale multi-color imaging and slitless spectroscopy survey on the Chinese space station and its application in dark energy research,” Scientia Sinica Physica, Mechanica & Astronomica 41 no. 12, (Jan., 2011) 1441.
- Y. Cao, Y. Gong, X.-M. Meng, C. K. Xu, X. Chen, Q. Guo, R. Li, D. Liu, Y. Xue, L. Cao, X. Fu, X. Zhang, S. Wang, and H. Zhan, “Testing photometric redshift measurements with filter definition of the Chinese Space Station Optical Survey (CSS-OS),” Mon. Not. Roy. Astron. Soc. 480 no. 2, (Oct., 2018) 2178–2190, [ arXiv:1706.09586 [astro-ph.IM]].
- Y. Gong, X. Liu, Y. Cao, X. Chen, Z. Fan, R. Li, X.-D. Li, Z. Li, X. Zhang, and H. Zhan, “Cosmology from the Chinese Space Station Optical Survey (CSS-OS),” Astrophys. J. 883 (2019) 203, [ arXiv:1901.04634 [astro-ph.CO]].
- A. Chen, Y. Gong, F. Wu, Y. Wang, and X. Chen, “Constraining Brans–Dicke Cosmology with the CSST Galaxy Clustering Spectroscopic Survey,” Res. Astron. Astrophys. 22 no. 5, (2022) 055021, [ arXiv:2202.07571 [astro-ph.CO]].
- H. Lin, Y. Gong, X. Chen, K. C. Chan, Z. Fan, and H. Zhan, “Forecast of neutrino cosmology from the CSST photometric galaxy clustering and cosmic shear surveys,” Mon. Not. Roy. Astron. Soc. 515 no. 4, (2022) 5743–5757, [ arXiv:2203.11429 [astro-ph.CO]].
- DESI Collaboration, D. J. Schlegel et al., “A Spectroscopic Road Map for Cosmic Frontier: DESI, DESI-II, Stage-5,” [arXiv:2209.03585 [astro-ph.CO]].
- T. Sunayama, “Subaru PFS Cosmology,” Kashiwa Dark Matter Symposium 2023.
- L. Amendola et al., “Cosmology and fundamental physics with the Euclid satellite,” Living Rev. Rel. 21 no. 1, (2018) 2, [ arXiv:1606.00180 [astro-ph.CO]].
- C. Carbone, L. Verde, Y. Wang, and A. Cimatti, “Neutrino constraints from future nearly all-sky spectroscopic galaxy surveys,” JCAP 2011 no. 03, (Mar., 2011) 030–030, [arXiv:1012.2868 [astro-ph.CO]].
- J. Lesgourgues, S. Pastor and L. Perotto, “Probing neutrino masses with future galaxy redshift surveys,” Phys. Rev. D 70, 045016 (2004) [arXiv:hep-ph/0403296 [hep-ph]].
- D. Blas, J. Lesgourgues, and T. Tram, “The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes,” JCAP 07 (2011) 034, [ arXiv:1104.2933 [astro-ph.CO]].
- Y. Wu, W. Xiao, R. Mu, D. Batuski, and A. Khalil, “Nearest neighbor vector analysis of sdss DR5 galaxy distribution,” Natural Science, 5, 47-51., [arXiv:1212.1671 [astro-ph.CO]].
- C.-P. Ma and E. Bertschinger, “Cosmological perturbation theory in the synchronous and conformal newtonian gauges,” Astrophys. J. 455 (Dec., 1995) 7. [arXiv:astro-ph/9401007 [astro-ph]].
- C. Howlett, A. Lewis, A. Hall and A. Challinor, “CMB power spectrum parameter degeneracies in the era of precision cosmology,” JCAP 04 (2012), 027 [arXiv:1201.3654 [astro-ph.CO]].
- M. Doran, “CMBEASY: an object oriented code for the cosmic microwave background,” JCAP 10 (2005), 011 [arXiv:astro-ph/0302138 [astro-ph.CO]].
- M. Zaldarriaga, U. Seljak and E. Bertschinger, “Integral solution for the microwave background anisotropies in nonflat universes,” Astrophys. J. 494 (1998), 491-502 [arXiv:astro-ph/9704265 [astro-ph.CO]].
- D. Inman, J. D. Emberson, U.-L. Pen, A. Farchi, H.-R. Yu, and J. Harnois-Déraps, “Precision reconstruction of the cold dark matter-neutrino relative velocity from N𝑁Nitalic_N-body simulations,” Phys. Rev. D 92 no. 2, (2015) 023502, [ arXiv:1503.07480 [astro-ph.CO]].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.