Strong Homotopy Algebras for Chiral Higher Spin Gravity via Stokes Theorem (2312.16573v2)
Abstract: Chiral higher spin gravity is defined in terms of a strong homotopy algebra of pre-Calabi-Yau type (noncommutative Poisson structure). All structure maps are given by the integrals over the configuration space of concave polygons and the first two maps are related to the (Shoikhet-Tsygan-)Kontsevich Formality. As with the known formality theorems, we prove the $A_\infty$-relations via Stokes' theorem by constructing a closed form and a configuration space whose boundary components lead to the $A_\infty$-relations. This gives a new way to formulate higher spin gravities and hints at a construct encompassing the known formality theorems.
- L. Cangemi, M. Chiodaroli, H. Johansson, A. Ochirov, P. Pichini, and E. Skvortsov, “From higher-spin gauge interactions to Compton amplitudes for root-Kerr,” arXiv:2311.14668 [hep-th].
- X. Bekaert, N. Boulanger, A. Campoleoni, M. Chiodaroli, D. Francia, M. Grigoriev, E. Sezgin, and E. Skvortsov, “Snowmass White Paper: Higher Spin Gravity and Higher Spin symmetry,” arXiv:2205.01567 [hep-th].
- X. Bekaert, J. Erdmenger, D. Ponomarev, and C. Sleight, “Quartic AdS Interactions in Higher-Spin Gravity from Conformal Field Theory,” JHEP 11 (2015) 149, arXiv:1508.04292 [hep-th].
- J. Maldacena, D. Simmons-Duffin, and A. Zhiboedov, “Looking for a bulk point,” JHEP 01 (2017) 013, arXiv:1509.03612 [hep-th].
- C. Sleight and M. Taronna, “Higher-Spin Gauge Theories and Bulk Locality,” Phys. Rev. Lett. 121 no. 17, (2018) 171604, arXiv:1704.07859 [hep-th].
- D. Ponomarev, “A Note on (Non)-Locality in Holographic Higher Spin Theories,” Universe 4 no. 1, (2018) 2, arXiv:1710.00403 [hep-th].
- M. Blencowe, “A Consistent Interacting Massless Higher Spin Field Theory in D𝐷Ditalic_D = (2+1),” Class.Quant.Grav. 6 (1989) 443.
- E. Bergshoeff, M. P. Blencowe, and K. S. Stelle, “Area Preserving Diffeomorphisms and Higher Spin Algebra,” Commun. Math. Phys. 128 (1990) 213.
- A. Campoleoni, S. Fredenhagen, S. Pfenninger, and S. Theisen, “Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields,” JHEP 1011 (2010) 007, arXiv:1008.4744 [hep-th].
- M. Henneaux and S.-J. Rey, “Nonlinear W∞subscript𝑊W_{\infty}italic_W start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT as Asymptotic Symmetry of Three-Dimensional Higher Spin Anti-de Sitter Gravity,” JHEP 1012 (2010) 007, arXiv:1008.4579 [hep-th].
- C. N. Pope and P. K. Townsend, “Conformal Higher Spin in (2+1)-dimensions,” Phys. Lett. B225 (1989) 245–250.
- E. S. Fradkin and V. Ya. Linetsky, “A Superconformal Theory of Massless Higher Spin Fields in D𝐷Ditalic_D = (2+1),” Mod. Phys. Lett. A4 (1989) 731. [Annals Phys.198,293(1990)].
- M. Grigoriev, I. Lovrekovic, and E. Skvortsov, “New Conformal Higher Spin Gravities in 3d3𝑑3d3 italic_d,” JHEP 01 (2020) 059, arXiv:1909.13305 [hep-th].
- M. Grigoriev, K. Mkrtchyan, and E. Skvortsov, “Matter-free higher spin gravities in 3D: Partially-massless fields and general structure,” Phys. Rev. D 102 no. 6, (2020) 066003, arXiv:2005.05931 [hep-th].
- A. Y. Segal, “Conformal higher spin theory,” Nucl. Phys. B664 (2003) 59–130, arXiv:hep-th/0207212 [hep-th].
- A. A. Tseytlin, “On limits of superstring in AdS5×S5𝐴𝑑subscript𝑆5superscript𝑆5AdS_{5}\times S^{5}italic_A italic_d italic_S start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT × italic_S start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT,” Theor. Math. Phys. 133 (2002) 1376–1389, arXiv:hep-th/0201112 [hep-th]. [Teor. Mat. Fiz.133,69(2002)].
- X. Bekaert, E. Joung, and J. Mourad, “Effective action in a higher-spin background,” JHEP 02 (2011) 048, arXiv:1012.2103 [hep-th].
- T. Basile, M. Grigoriev, and E. Skvortsov, “Covariant action for conformal higher spin gravity,” J. Phys. A 56 no. 38, (2023) 385402, arXiv:2212.10336 [hep-th].
- R. R. Metsaev, “Poincare invariant dynamics of massless higher spins: Fourth order analysis on mass shell,” Mod. Phys. Lett. A6 (1991) 359–367.
- R. R. Metsaev, “S𝑆Sitalic_S matrix approach to massless higher spins theory. 2: The Case of internal symmetry,” Mod. Phys. Lett. A6 (1991) 2411–2421.
- D. Ponomarev and E. D. Skvortsov, “Light-Front Higher-Spin Theories in Flat Space,” J. Phys. A50 no. 9, (2017) 095401, arXiv:1609.04655 [hep-th].
- E. D. Skvortsov, T. Tran, and M. Tsulaia, “Quantum Chiral Higher Spin Gravity,” Phys. Rev. Lett. 121 no. 3, (2018) 031601, arXiv:1805.00048 [hep-th].
- E. Skvortsov, T. Tran, and M. Tsulaia, “More on Quantum Chiral Higher Spin Gravity,” Phys. Rev. D101 no. 10, (2020) 106001, arXiv:2002.08487 [hep-th].
- D. Ponomarev, “Chiral Higher Spin Theories and Self-Duality,” JHEP 12 (2017) 141, arXiv:1710.00270 [hep-th].
- K. Krasnov, E. Skvortsov, and T. Tran, “Actions for Self-dual Higher Spin Gravities,” arXiv:2105.12782 [hep-th].
- T. Tran, “Twistor constructions for higher-spin extensions of (self-dual) Yang-Mills,” JHEP 11 (2021) 117, arXiv:2107.04500 [hep-th].
- T. Tran, “Toward a twistor action for chiral higher-spin gravity,” Phys. Rev. D 107 no. 4, (2023) 046015, arXiv:2209.00925 [hep-th].
- T. Adamo and T. Tran, “Higher-spin Yang–Mills, amplitudes and self-duality,” Lett. Math. Phys. 113 no. 3, (2023) 50, arXiv:2210.07130 [hep-th].
- M. Sperling and H. C. Steinacker, “Covariant 4-dimensional fuzzy spheres, matrix models and higher spin,” J. Phys. A50 no. 37, (2017) 375202, arXiv:1704.02863 [hep-th].
- H. Steinacker and T. Tran, “A Twistorial Description of the IKKT-Matrix Model,” arXiv:2203.05436 [hep-th].
- H. C. Steinacker and T. Tran, “Soft limit of higher-spin interactions in the IKKT model,” arXiv:2311.14163 [hep-th].
- M. A. Vasiliev, “Closed equations for interacting gauge fields of all spins,” JETP Lett. 51 (1990) 503–507.
- M. A. Vasiliev, “Higher spin gauge theories: Star-product and AdS space,” hep-th/9910096.
- X. Bekaert and M. Grigoriev, “Higher order singletons, partially massless fields and their boundary values in the ambient approach,” Nucl. Phys. B876 (2013) 667–714, arXiv:1305.0162 [hep-th].
- R. Bonezzi, N. Boulanger, E. Sezgin, and P. Sundell, “Frobenius–Chern–Simons gauge theory,” J. Phys. A50 no. 5, (2017) 055401, arXiv:1607.00726 [hep-th].
- X. Bekaert, M. Grigoriev, and E. D. Skvortsov, “Higher Spin Extension of Fefferman-Graham Construction,” Universe 4 no. 2, (2018) 17, arXiv:1710.11463 [hep-th].
- M. Grigoriev and E. D. Skvortsov, “Type-B Formal Higher Spin Gravity,” JHEP 05 (2018) 138, arXiv:1804.03196 [hep-th].
- N. Boulanger, P. Kessel, E. D. Skvortsov, and M. Taronna, “Higher spin interactions in four-dimensions: Vasiliev versus Fronsdal,” J. Phys. A49 no. 9, (2016) 095402, arXiv:1508.04139 [hep-th].
- R. de Mello Koch, A. Jevicki, K. Suzuki, and J. Yoon, “AdS Maps and Diagrams of Bi-local Holography,” JHEP 03 (2019) 133, arXiv:1810.02332 [hep-th].
- O. Aharony, S. M. Chester, and E. Y. Urbach, “A Derivation of AdS/CFT for Vector Models,” arXiv:2011.06328 [hep-th].
- A. Sharapov and E. Skvortsov, “Formal Higher Spin Gravities,” Nucl. Phys. B941 (2019) 838–860, arXiv:1901.01426 [hep-th].
- E. Skvortsov and R. Van Dongen, “Minimal models of field theories: Chiral Higher Spin Gravity,” arXiv:2204.10285 [hep-th].
- A. Sharapov, E. Skvortsov, A. Sukhanov, and R. Van Dongen, “Minimal model of Chiral Higher Spin Gravity,” arXiv:2205.07794 [hep-th].
- A. Sharapov and E. Skvortsov, “Chiral Higher Spin Gravity in (A)dS44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT and secrets of Chern–Simons Matter Theories,” arXiv:2205.15293 [hep-th].
- A. Sharapov, E. Skvortsov, and R. Van Dongen, “Chiral higher spin gravity and convex geometry,” SciPost Phys. 14 no. 6, (2023) 162, arXiv:2209.01796 [hep-th].
- A. Sharapov, E. Skvortsov, A. Sukhanov, and R. Van Dongen, “More on Chiral Higher Spin Gravity and convex geometry,” Nucl. Phys. B 990 (2023) 116152, arXiv:2209.15441 [hep-th].
- A. A. Sharapov and E. D. Skvortsov, “Formal higher-spin theories and Kontsevich–Shoikhet–Tsygan formality,” Nucl. Phys. B921 (2017) 538–584, arXiv:1702.08218 [hep-th].
- A. Sharapov and E. Skvortsov, “Characteristic Cohomology and Observables in Higher Spin Gravity,” JHEP 12 (2020) 190, arXiv:2006.13986 [hep-th].
- M. Kontsevich, “Deformation quantization of Poisson manifolds. 1.,” Lett. Math. Phys. 66 (2003) 157–216, arXiv:q-alg/9709040 [q-alg].
- B. Tsygan, “Formality conjecture for chains,” arXiv:math/9904132.
- B. Shoikhet, “A proof of the Tsygan formality conjecture for chains,” Advances in Mathematics 179 no. 1, (2003) 7 – 37.
- M. Kontsevich, A. Takeda, and Y. Vlassopoulos, “Pre-Calabi-Yau algebras and topological quantum field theories,” arXiv preprint arXiv:2112.14667 (2021) .
- N. Iyudu, M. Kontsevich, and Y. Vlassopoulos, “Pre-Calabi-Yau algebras as noncommutative Poisson structures,” Journal of Algebra 567 (2021) 63–90.
- M. Kontsevich and Y. Soibelman, “Notes on A∞subscript𝐴A_{\infty}italic_A start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT-Algebras, A∞subscript𝐴A_{\infty}italic_A start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT-Categories and Non-Commutative Geometry,” Lect. Notes in Physics 757 (2009) 153–220, arXiv:math/0606241.
- H. Kajiura, “Noncommutative homotopy algebras associated with open strings,” Rev. Math. Phys. 19 (2007) 1–99, arXiv:math/0306332 [math-qa].
- T. Lada, “Commutators of A∞subscript𝐴A_{\infty}italic_A start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT structures,” Contemp. Math. 227 (1999) 227–233.
- R. R. Metsaev, “Cubic interactions for arbitrary spin 𝒩𝒩\mathcal{N}caligraphic_N -extended massless supermultiplets in 4d flat space,” JHEP 11 (2019) 084, arXiv:1909.05241 [hep-th].
- M. Tsulaia and D. Weissman, “Supersymmetric quantum chiral higher spin gravity,” JHEP 12 (2022) 002, arXiv:2209.13907 [hep-th].
- R. Penrose, “Zero rest mass fields including gravitation: Asymptotic behavior,” Proc. Roy. Soc. Lond. A284 (1965) 159.
- 1979.
- M. G. Eastwood, R. Penrose, and R. O. Wells, “Cohomology and Massless Fields,” Commun. Math. Phys. 78 (1981) 305–351.
- N. M. J. Woodhouse, “Real methods in twistor theory,” Class. Quant. Grav. 2 (1985) 257–291.
- M. A. Vasiliev, “Free massless fields of arbitrary spin in the de sitter space and initial data for a higher spin superalgebra,” Fortsch. Phys. 35 (1987) 741–770.
- M. A. Vasiliev, “Consistent equations for interacting massless fields of all spins in the first order in curvatures,” Annals Phys. 190 (1989) 59–106.
- A. S. Cattaneo and G. Felder, “A Path integral approach to the Kontsevich quantization formula,” Commun. Math. Phys. 212 (2000) 591–611, arXiv:math/9902090.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.