Universal control of four singlet-triplet qubits (2312.16101v3)
Abstract: The coherent control of interacting spins in semiconductor quantum dots is of strong interest for quantum information processing as well as for studying quantum magnetism from the bottom up. Here, we present a $2\times4$ germanium quantum dot array with full and controllable interactions between nearest-neighbor spins. As a demonstration of the level of control, we define four singlet-triplet qubits in this system and show two-axis single-qubit control of each qubit and SWAP-style two-qubit gates between all neighbouring qubit pairs, yielding average single-qubit gate fidelities of 99.49(8)-99.84(1)% and Bell state fidelities of 73(1)-90(1)%. Combining these operations, we experimentally implement a circuit designed to generate and distribute entanglement across the array. A remote Bell state with a fidelity of 75(2)% and concurrence of 22(4)% is achieved. These results highlight the potential of singlet-triplet qubits as a competing platform for quantum computing and indicate that scaling up the control of quantum dot spins in extended bilinear arrays can be feasible.
- Vandersypen, L. et al. Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent. npj Quantum Inf. 3, 34 (2017).
- Heinrich, A. J. et al. Quantum-coherent nanoscience. Nat. Nanotechnol. 16, 1318–1329 (2021).
- Gonzalez-Zalba, M. et al. Scaling silicon-based quantum computing using CMOS technology. Nat. Electron. 4, 872–884 (2021).
- Chatterjee, A. et al. Semiconductor qubits in practice. Nat. Rev. Phys. 3, 157–177 (2021).
- Review of performance metrics of spin qubits in gated semiconducting nanostructures. Nat. Rev. Phys. 4, 672–688 (2022).
- Semiconductor spin qubits. Rev. Mod. Phys. 95, 025003 (2023).
- Xue, X. et al. Quantum logic with spin qubits crossing the surface code threshold. Nature 601, 343–347 (2022).
- Noiri, A. et al. Fast universal quantum gate above the fault-tolerance threshold in silicon. Nature 601, 338–342 (2022).
- Mills, A. R. et al. Two-qubit silicon quantum processor with operation fidelity exceeding 99%. Sci. Adv. 8, eabn5130 (2022).
- Hendrickx, N. W. et al. A four-qubit germanium quantum processor. Nature 591, 580–585 (2021).
- Philips, S. G. et al. Universal control of a six-qubit quantum processor in silicon. Nature 609, 919–924 (2022).
- Lawrie, W. et al. Simultaneous single-qubit driving of semiconductor spin qubits at the fault-tolerant threshold. Nat. Commun. 14, 3617 (2023).
- Shulman, M. D. et al. Demonstration of entanglement of electrostatically coupled singlet-triplet qubits. Science 336, 202–205 (2012).
- Nichol, J. M. et al. High-fidelity entangling gate for double-quantum-dot spin qubits. npj Quantum Inf. 3, 3 (2017).
- Weinstein, A. J. et al. Universal logic with encoded spin qubits in silicon. Nature 615, 817–822 (2023).
- Hensgens, T. et al. Quantum simulation of a Fermi–Hubbard model using a semiconductor quantum dot array. Nature 548, 70–73 (2017).
- Dehollain, J. P. et al. Nagaoka ferromagnetism observed in a quantum dot plaquette. Nature 579, 528–533 (2020).
- van Diepen, C. J. et al. Quantum simulation of antiferromagnetic Heisenberg chain with gate-defined quantum dots. Phys. Rev. X. 11, 041025 (2021).
- Wang, C.-A. et al. Probing resonating valence bonds on a programmable germanium quantum simulator. npj Quantum Inf. 9, 58 (2023).
- Jang, W. et al. Individual two-axis control of three singlet-triplet qubits in a micromagnet integrated quantum dot array. Appl. Phys. Lett. 117, 234001 (2020).
- Fedele, F. et al. Simultaneous operations in a two-dimensional array of singlet-triplet qubits. PRX Quantum 2, 040306 (2021).
- Mortemousque, P.-A. et al. Coherent control of individual electron spins in a two-dimensional quantum dot array. Nat. Nanotechnol. 16, 296–301 (2021).
- Levy, J. Universal quantum computation with spin-1/2121/21 / 2 pairs and Heisenberg exchange. Phys. Rev. Lett. 89, 147902 (2002).
- Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).
- Maune, B. M. et al. Coherent singlet-triplet oscillations in a silicon-based double quantum dot. Nature 481, 344–347 (2012).
- Wu, X. et al. Two-axis control of a singlet–triplet qubit with an integrated micromagnet. Proc. Natl. Acad. Sci. U.S.A. 111, 11938–11942 (2014).
- Jock, R. M. et al. A silicon metal-oxide-semiconductor electron spin-orbit qubit. Nat. Commun. 9, 1768 (2018).
- Cerfontaine, P. et al. Closed-loop control of a GaAs-based singlet-triplet spin qubit with 99.5% gate fidelity and low leakage. Nat. Commun. 11, 4144 (2020).
- High-fidelity gate set for exchange-coupled singlet-triplet qubits. Phys. Rev. B 101, 155311 (2020).
- Jirovec, D. et al. A singlet-triplet hole spin qubit in planar Ge. Nat. Mater. 20, 1106–1112 (2021).
- Takeda, K. et al. Optimized electrical control of a Si/SiGe spin qubit in the presence of an induced frequency shift. npj Quantum Inf. 4, 54 (2018).
- Undseth, B. et al. Hotter is easier: Unexpected temperature dependence of spin qubit frequencies. Phys. Rev. X 13, 041015 (2023).
- Undseth, B. et al. Nonlinear response and crosstalk of electrically driven silicon spin qubits. Phys. Rev. Appl. 19, 044078 (2023).
- Current rectification by pauli exclusion in a weakly coupled double quantum dot system. Science 297, 1313–1317 (2002).
- Qiao, H. et al. Floquet-enhanced spin swaps. Nat. Commun. 12, 2142 (2021).
- Chanrion, E. et al. Charge detection in an array of CMOS quantum dots. Phys. Rev. Appl. 14, 024066 (2020).
- Duan, J. et al. Remote capacitive sensing in two-dimensional quantum-dot arrays. Nano Lett. 20, 7123–7128 (2020).
- Hsiao, T. K. et al. Exciton transport in a germanium quantum dot ladder. arXiv preprint arXiv:2307.02401 (2023).
- Borsoi, F. et al. Shared control of a 16 semiconductor quantum dot crossbar array. Nat. Nanotechnol. 1–7 (2023).
- Neyens, S. et al. Probing single electrons across 300 mm spin qubit wafers. arXiv preprint arXiv:2307.04812 (2023).
- Scappucci, G. et al. The germanium quantum information route. Nat. Rev. Mater. 6, 926–943 (2021).
- A coherent beam splitter for electronic spin states. Science 327, 669–672 (2010).
- Harnessing the GaAs quantum dot nuclear spin bath for quantum control. Phys. Rev. B 82, 115445 (2010).
- Nichol, J. M. et al. Quenching of dynamic nuclear polarization by spin-orbit coupling in GaAs quantum dots. Nat. Commun. 6, 7682 (2015).
- Jirovec, D. et al. Dynamics of hole singlet-triplet qubits with large g𝑔gitalic_g-factor differences. Phys. Rev. Lett. 128, 126803 (2022).
- All-electrical control of hole singlet-triplet spin qubits at low-leakage points. Phys. Rev. B 104, 195421 (2021).
- Quantum control of hole spin qubits in double quantum dots. Phys. Rev. Appl. 18, 054090 (2022).
- Coherent spin–valley oscillations in silicon. Nature Physics 19, 386–393 (2023).
- Rooney, J. et al. Gate modulation of the hole singlet-triplet qubit frequency in germanium. arXiv preprint arXiv:2311.10188 (2023).
- Lodari, M. et al. Low percolation density and charge noise with holes in germanium. Mater. Quantum Technol. 1, 011002 (2021).
- Bertrand, B. et al. Quantum manipulation of two-electron spin states in isolated double quantum dots. Phys. Rev. Lett. 115, 096801 (2015).
- Hendrickx, N. et al. A single-hole spin qubit. Nat. Commun. 11, 3478 (2020).
- Martins, F. et al. Noise suppression using symmetric exchange gates in spin qubits. Phys. Rev. Lett. 116, 116801 (2016).
- Reed, M. D. et al. Reduced sensitivity to charge noise in semiconductor spin qubits via symmetric operation. Phys. Rev. Lett. 116, 110402 (2016).
- Hendrickx, N. et al. Sweet-spot operation of a germanium hole spin qubit with highly anisotropic noise sensitivity. arXiv preprint arXiv:2305.13150 (2023).
- Charge-fluctuation-induced dephasing of exchange-coupled spin qubits. Phys. Rev. Lett. 96, 100501 (2006).
- Spin decoherence in a two-qubit CPHASE gate: the critical role of tunneling noise. npj Quantum Inf. 4, 62 (2018).
- Wang, Z. et al. Optimal operation points for ultrafast, highly coherent Ge hole spin-orbit qubits. npj Quantum Inf. 7, 54 (2021).
- Modelling of planar germanium hole qubits in electric and magnetic fields. arXiv preprint arXiv:2208.04795 (2022).
- Massai, L. et al. Impact of interface traps on charge noise, mobility and percolation density in Ge/SiGe heterostructures. arXiv preprint arXiv:2310.05902 (2023).
- Lodari, M. et al. Lightly strained germanium quantum wells with hole mobility exceeding one million. Appl. Phys. Lett. 120 (2022).
- Stehouwer, L. E. et al. Germanium wafers for strained quantum wells with low disorder. Appl. Phys. Lett. 123 (2023).
- Surprises on the way from one-to two-dimensional quantum magnets: The ladder materials. Science 271, 618–623 (1996).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.