Papers
Topics
Authors
Recent
2000 character limit reached

Classical capacity of quantum non-Gaussian attenuator and amplifier channels (2312.15623v1)

Published 25 Dec 2023 in quant-ph

Abstract: We consider a quantum bosonic channel that couples the input mode via a beam splitter or two-mode squeezer to an environmental mode that is prepared in an arbitrary state. We investigate the classical capacity of this channel, which we call a non-Gaussian attenuator or amplifier channel. If the environment state is thermal, we of course recover a Gaussian phase-covariant channel whose classical capacity is well known. Otherwise, we derive both a lower and an upper bound to the classical capacity of the channel, drawing inspiration from the classical treatment of the capacity of non-Gaussian additive-noise channels. We show that the lower bound to the capacity is always achievable and give examples where the non-Gaussianity of the channel can be exploited so that the communication rate beats the capacity of the Gaussian-equivalent channel (i.e., the channel where the environment state is replaced by a Gaussian state with the same covariance matrix). Finally, our upper bound leads us to formulate and investigate conjectures on the input state that minimizes the output entropy of non-Gaussian attenuator or amplifier channels. Solving these conjectures would be a main step towards accessing the capacity of a large class of non-Gaussian bosonic channels.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. C. E. Shannon, The Bell System Technical Journal 27, 379 (1948).
  2. A. S. Holevo, Probl. Inf. Transm. 9, 177 (1973).
  3. B. Schumacher and M. D. Westmoreland, Phys. Rev. A 56, 131 (1997).
  4. A. Holevo, IEEE Transactions on Information Theory 44, 269 (1998).
  5. A. S. Holevo and R. F. Werner, Phys. Rev. A 63, 032312 (2001).
  6. V. Giovannetti, A. S. Holevo, and R. García-Patrón, Commun. Math. Phys. 334, 1553 (2015).
  7. C. King, IEEE Trans. Inf. Theory 49, 221 (2003).
  8. L. Memarzadeh and S. Mancini, Phys. Rev. A 94, 022341 (2016).
  9. A. Arqand, L. Memarzadeh, and S. Mancini, Phys. Rev. A 102, 042413 (2020).
  10. S. Dehdashti, J. Notzel, and P. van Loock,   (2022), arXiv:2211.09012 [quant-ph] .
  11. L. Lami and M. M. Wilde, Nat. Photonics 17, 525 (2023).
  12. S. Guha, J. H. Shapiro, and R. G.-P. Sánchez, 2016 IEEE International Symposium on Information Theory (ISIT) , 705 (2016).
  13. K. K. Sabapathy and A. Winter, Phys. Rev. A 95, 062309 (2017).
  14. M. B. Hastings, Nat. Phys. 5, 255 (2009).
  15. S. Ihara, Information and Control 37, 34 (1978).
  16. J. Schäfer, E. Karpov, and N. J. Cerf, Phys. Rev. A 84, 032318 (2011).

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.