Classical capacity of quantum non-Gaussian attenuator and amplifier channels (2312.15623v1)
Abstract: We consider a quantum bosonic channel that couples the input mode via a beam splitter or two-mode squeezer to an environmental mode that is prepared in an arbitrary state. We investigate the classical capacity of this channel, which we call a non-Gaussian attenuator or amplifier channel. If the environment state is thermal, we of course recover a Gaussian phase-covariant channel whose classical capacity is well known. Otherwise, we derive both a lower and an upper bound to the classical capacity of the channel, drawing inspiration from the classical treatment of the capacity of non-Gaussian additive-noise channels. We show that the lower bound to the capacity is always achievable and give examples where the non-Gaussianity of the channel can be exploited so that the communication rate beats the capacity of the Gaussian-equivalent channel (i.e., the channel where the environment state is replaced by a Gaussian state with the same covariance matrix). Finally, our upper bound leads us to formulate and investigate conjectures on the input state that minimizes the output entropy of non-Gaussian attenuator or amplifier channels. Solving these conjectures would be a main step towards accessing the capacity of a large class of non-Gaussian bosonic channels.
- C. E. Shannon, The Bell System Technical Journal 27, 379 (1948).
- A. S. Holevo, Probl. Inf. Transm. 9, 177 (1973).
- B. Schumacher and M. D. Westmoreland, Phys. Rev. A 56, 131 (1997).
- A. Holevo, IEEE Transactions on Information Theory 44, 269 (1998).
- A. S. Holevo and R. F. Werner, Phys. Rev. A 63, 032312 (2001).
- V. Giovannetti, A. S. Holevo, and R. GarcÃa-Patrón, Commun. Math. Phys. 334, 1553 (2015).
- C. King, IEEE Trans. Inf. Theory 49, 221 (2003).
- L. Memarzadeh and S. Mancini, Phys. Rev. A 94, 022341 (2016).
- A. Arqand, L. Memarzadeh, and S. Mancini, Phys. Rev. A 102, 042413 (2020).
- S. Dehdashti, J. Notzel, and P. van Loock,  (2022), arXiv:2211.09012 [quant-ph] .
- L. Lami and M. M. Wilde, Nat. Photonics 17, 525 (2023).
- S. Guha, J. H. Shapiro, and R. G.-P. Sánchez, 2016 IEEE International Symposium on Information Theory (ISIT) , 705 (2016).
- K. K. Sabapathy and A. Winter, Phys. Rev. A 95, 062309 (2017).
- M. B. Hastings, Nat. Phys. 5, 255 (2009).
- S. Ihara, Information and Control 37, 34 (1978).
- J. Schäfer, E. Karpov, and N. J. Cerf, Phys. Rev. A 84, 032318 (2011).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.