Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hulls of projective Reed-Muller codes over the projective plane (2312.13921v3)

Published 21 Dec 2023 in cs.IT, math.AC, and math.IT

Abstract: By solving a problem regarding polynomials in a quotient ring, we obtain the relative hull and the Hermitian hull of projective Reed-Muller codes over the projective plane. The dimension of the hull determines the minimum number of maximally entangled pairs required for the corresponding entanglement-assisted quantum error-correcting code. Hence, by computing the dimension of the hull we now have all the parameters of the symmetric and asymmetric entanglement-assisted quantum error-correcting codes constructed with projective Reed-Muller codes over the projective plane. As a byproduct, we also compute the dimension of the Hermitian hull for affine Reed-Muller codes in 2 variables.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. Relative hulls and quantum codes. ArXiv 2212.14521, 2022.
  2. S. Ball. Some constructions of quantum MDS codes. Des. Codes Cryptogr., 89(5):811–821, 2021.
  3. Vanishing ideals of projective spaces over finite fields and a projective footprint bound. Acta Math. Sin. (Engl. Ser.), 35(1):47–63, 2019.
  4. The Magma algebra system. I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and number theory (London, 1993).
  5. Correcting quantum errors with entanglement. Science, 314(5798):436–439, 2006.
  6. Quantum error correction via codes over GF⁢(4)GF4{\rm GF}(4)roman_GF ( 4 ). IEEE Trans. Inform. Theory, 44(4):1369–1387, 1998.
  7. On generalized Reed-Muller codes and their relatives. Information and Control, 16:403–442, 1970.
  8. K. Feng and Z. Ma. A finite Gilbert-Varshamov bound for pure stabilizer quantum codes. IEEE Trans. Inform. Theory, 50(12):3323–3325, 2004.
  9. Entanglement-assisted quantum error-correcting codes over arbitrary finite fields. Quantum Inf. Process., 18(4):Paper No. 116, 18, 2019.
  10. Asymmetric entanglement-assisted quantum error-correcting codes and BCH codes. IEEE Access, 8:18571–18579, 2020.
  11. Stabilizer quantum codes from J𝐽Jitalic_J-affine variety codes and a new Steane-like enlargement. Quantum Inf. Process., 14(9):3211–3231, 2015.
  12. Subfield subcodes of projective Reed-Muller codes. Accepted for publication at Finite Fields Appl. ArXiv 2307.09298, 2023.
  13. Entanglement-assisted quantum error-correcting codes from subfield subcodes of projective Reed–Solomon codes. Comput. Appl. Math., 42(363), 2023.
  14. L. Ioffe and M. Mézard. Asymmetric quantum error-correcting codes. Phys. Rev. A, 75:032345, Mar 2007.
  15. Evaluation codes and their basic parameters. Des. Codes Cryptogr., 89(2):269–300, 2021.
  16. New generalizations of the Reed-Muller codes. I. Primitive codes. IEEE Trans. Inform. Theory, IT-14:189–199, 1968.
  17. Nonbinary stabilizer codes over finite fields. IEEE Trans. Inform. Theory, 52(11):4892–4914, 2006.
  18. G. Lachaud. The parameters of projective Reed-Muller codes. Discrete Math., 81(2):217–221, 1990.
  19. The dual of an evaluation code. Des. Codes Cryptogr., 89(7):1367–1403, 2021.
  20. Minimum distance functions of graded ideals and Reed-Muller-type codes. J. Pure Appl. Algebra, 221(2):251–275, 2017.
  21. R. Matsumoto. Improved gilbert–varshamov bound for entanglement-assisted asymmetric quantum error correction by symplectic orthogonality. IEEE Trans. Quantum Eng., 1:1–4, 2020.
  22. P. Sarvepalli and A. Klappenecker. Nonbinary quantum reed-muller codes. In Proceedings. International Symposium on Information Theory, 2005. ISIT 2005., pages 1023–1027, 2005.
  23. Nonbinary stabilizer codes. In Mathematics of quantum computation and quantum technology, Chapman & Hall/CRC Appl. Math. Nonlinear Sci. Ser., pages 287–308. Chapman & Hall/CRC, Boca Raton, FL, 2008.
  24. P. Shor. Fault-tolerant quantum computation. In Proceedings of 37th Conference on Foundations of Computer Science, pages 56–65, 1996.
  25. A. B. Sørensen. Projective Reed-Muller codes. IEEE Trans. Inform. Theory, 37(6):1567–1576, 1991.
  26. A. M. Steane. Simple quantum error-correcting codes. Phys. Rev. A (3), 54(6):4741–4751, 1996.
  27. A. M. Steane. Quantum Reed-Muller codes. IEEE Trans. Inform. Theory, 45(5):1701–1703, 1999.
Citations (2)

Summary

We haven't generated a summary for this paper yet.