Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Numerical results on Quantum Energy Inequalities in Integrable Models at the Two-Particle level (2312.14960v2)

Published 13 Dec 2023 in hep-th and gr-qc

Abstract: In this article, we study the impact of self-interaction and multiparticle states on sustaining negative energies in relativistic quantum systems. For physically reasonable models, one usually requires bounds on both magnitude and duration of the accumulation of negative energy, typically given in form of a quantum energy inequality (QEI). Such bounds have applications in semiclassical gravity where they exclude exotic spacetime geometries and imply the formation of singularities. The essence of this article is a novel numerical method for determining optimal QEI bounds at the one- or two-particle level, extending previous work focused on the one-particle case and overcoming a new type of technical challenge associated with the two-particle scenario. Our method is tailored for integrable models in quantum field theory constructed via the S-matrix boostrap. Applying the method to a representative model, the sinh-Gordon model, we confirm self-interaction as the source of negative energy, with stronger interactions leading to more pronounced negativities. Moreover, we establish the validity of QEIs and the averaged weak energy condition (AWEC) at the one- and two-particle level. Lastly, we identify a constrained one-parameter class of nonminimal stress tensor expressions satisfying QEIs at both levels, with more stringent constraints emerging from the QEI bounds at the two-particle level.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (54)
  1. H. Epstein, V. Glaser, and A. Jaffe, Nonpositivity of the energy density in quantized field theories, Il Nuovo Cimento (1955-1965) 36, 1016 (1965).
  2. C. J. Fewster, Energy inequalities in quantum field theory, in XIVth International Congress on Mathematical Physics (World Scientific, Lisbon, Portugal, 2006) pp. 559–568.
  3. E.-A. Kontou and K. Sanders, Energy conditions in general relativity and quantum field theory, Classical and Quantum Gravity 37, 193001 (2020), arxiv:2003.01815 .
  4. L. H. Ford, Constraints on negative-energy fluxes, Physical Review D 43, 3972 (1991).
  5. L. H. Ford and T. A. Roman, Averaged energy conditions and quantum inequalities, Physical Review D 51, 4277 (1995).
  6. L. H. Ford and T. A. Roman, Restrictions on negative energy density in flat spacetime, Physical Review D 55, 2082 (1997).
  7. M. J. Pfenning and L. H. Ford, Quantum inequalities on the energy density in static Robertson-Walker spacetimes, Physical Review D 55, 4813 (1997).
  8. E. E. Flanagan, Quantum inequalities in two-dimensional Minkowski spacetime, Physical Review D 56, 4922 (1997).
  9. C. J. Fewster and S. P. Eveson, Bounds on negative energy densities in flat spacetime, Physical Review D 58, 10.1103/PhysRevD.58.084010 (1998).
  10. L. H. Ford, M. J. Pfenning, and T. A. Roman, Quantum inequalities and singular negative energy densities, Physical Review D 57, 4839 (1998).
  11. M. J. Pfenning and L. H. Ford, Quantum Inequality Restrictions on Negative Energy Densities in Curved Spacetimes (1998a), arxiv:gr-qc/9805037 .
  12. M. J. Pfenning and L. H. Ford, Scalar field quantum inequalities in static spacetimes, Physical Review D 57, 3489 (1998b).
  13. D. N. Vollick, Negative energy density states for the Dirac field in flat space-time, Phys. Rev. D 57, 3484 (1998).
  14. C. J. Fewster and E. Teo, Bounds on negative energy densities in static space-times, Physical Review D 59, 104016 (1999).
  15. C. J. Fewster, A general worldline quantum inequality, Classical and Quantum Gravity 17, 1897 (2000).
  16. D. N. Vollick, Quantum inequalities in curved two-dimensional spacetimes, Physical Review D 61, 084022 (2000).
  17. C. J. Fewster and R. Verch, A Quantum Weak Energy Inequality for Dirac fields in curved spacetime, Communications in Mathematical Physics 225, 331 (2002), arxiv:math-ph/0105027 .
  18. M. J. Pfenning, Quantum inequalities for the electromagnetic field, Phys. Rev. D 65, 024009 (2002).
  19. C. J. Fewster and B. Mistry, Quantum Weak Energy Inequalities for the Dirac field in Flat Spacetime, Physical Review D 68, 105010 (2003), arxiv:gr-qc/0307098 .
  20. N. Graham and K. D. Olum, Negative energy densities in quantum field theory with a background potential, Physical Review D 67, 085014 (2003).
  21. C. J. Fewster, Quantum energy inequalities in two dimensions, Physical Review D 70, 127501 (2004).
  22. N. Graham, K. D. Olum, and D. Schwartz-Perlov, Energy conditions outside a dielectric ball, Physical Review D 70, 105019 (2004), arxiv:gr-qc/0407006 .
  23. C. J. Fewster and S. Hollands, Quantum energy inequalities in two-dimensional conformal field theory, Reviews in Mathematical Physics 17, 577 (2005).
  24. S. P. Dawson, A quantum weak energy inequality for the Dirac field in two-dimensional flat spacetime, Classical and Quantum Gravity 23, 287 (2006).
  25. S. P. Dawson and C. J. Fewster, An explicit quantum weak energy inequality for Dirac fields in curved spacetimes, Classical and Quantum Gravity 23, 6659 (2006).
  26. C. J. Fewster and L. W. Osterbrink, Quantum Energy Inequalities for the Non-Minimally Coupled Scalar Field, Journal of Physics A: Mathematical and Theoretical 41, 025402 (2008), arxiv:0708.2450 [gr-qc] .
  27. C. J. Fewster and C. J. Smith, Absolute Quantum Energy Inequalities in Curved Spacetime, Annales Henri Poincaré 9, 425 (2008).
  28. J. Schlemmer and R. Verch, Local Thermal Equilibrium States and Quantum Energy Inequalities, Annales Henri Poincaré 9, 945 (2008).
  29. G. Klinkhammer, Averaged energy conditions for free scalar fields in flat spacetime, Physical Review D 43, 2542 (1991).
  30. G. B. Folland, Fourier Analysis and Its Applications, The Wadsworth & Brooks/Cole Mathematics Series (Pacific Grove, Calif, 1992).
  31. U. Yurtsever, Averaged null energy condition and difference inequalities in quantum field theory, Physical Review D 51, 5797 (1995).
  32. E. E. Flanagan and R. M. Wald, Does back reaction enforce the averaged null energy condition in semiclassical gravity?, Physical Review D 54, 6233 (1996).
  33. L. H. Ford and T. A. Roman, Quantum Field Theory Constrains Traversable Wormhole Geometries, Physical Review D 53, 5496 (1996), arxiv:gr-qc/9510071 .
  34. C. J. Fewster and T. A. Roman, Null energy conditions in quantum field theory, Physical Review D 67, 044003 (2003).
  35. R. Wald and U. Yurtsever, General proof of the averaged null energy condition for a massless scalar field in two-dimensional curved spacetime, Physical Review D 44, 403 (1991).
  36. R. Verch, The averaged null energy condition for general quantum field theories in two dimensions, Journal of Mathematical Physics 41, 206 (2000).
  37. H. Bostelmann and C. J. Fewster, Quantum Inequalities from Operator Product Expansions, Communications in Mathematical Physics 292, 761 (2009).
  38. H. Bostelmann, D. Cadamuro, and C. J. Fewster, Quantum energy inequality for the massive Ising model, Physical Review D 88, 025019 (2013).
  39. M. B. Fröb and D. Cadamuro, A quantum energy inequality in the Sine–Gordon model (2022), arxiv:2212.07377 [hep-th, physics:math-ph] .
  40. H. Bostelmann and D. Cadamuro, Negative energy densities in integrable quantum field theories at one-particle level, Physical Review D 93, 065001 (2016).
  41. H. Bostelmann and D. Cadamuro, Characterization of Local Observables in Integrable Quantum Field Theories, Communications in Mathematical Physics 337, 1199 (2015).
  42. G. Lechner and C. Schützenhofer, Towards an Operator-Algebraic Construction of Integrable Global Gauge Theories, Annales Henri Poincaré 15, 645 (2014).
  43. S. Alazzawi and G. Lechner, Inverse Scattering and Local Observable Algebras in Integrable Quantum Field Theories, Communications in Mathematical Physics 354, 913 (2017).
  44. A. Liguori and M. Mintchev, Fock Representations of Quantum Fields with Generalized Statistic, Communications in Mathematical Physics 169, 635 (1995), arxiv:hep-th/9403039 .
  45. M. Karowski and P. Weisz, Exact form factors in (1 + 1)-dimensional field theoretic models with soliton behaviour, Nuclear Physics B 139, 455 (1978).
  46. H. Bostelmann and D. Cadamuro, An operator expansion for integrable quantum field theories, Journal of Physics A: Mathematical and Theoretical 46, 095401 (2013), arxiv:1208.4763 .
  47. This expression compares with the inversion formula derived in [52, Prop. 3.5] using ⟨𝜽|=m!⁢⟨l⁢(𝜽)|bra𝜽𝑚bra𝑙𝜽\mathinner{\langle{\bm{\theta}}|}=\sqrt{m!}\mathinner{\langle{l(\bm{\theta})}|}start_ATOM ⟨ bold_italic_θ | end_ATOM = square-root start_ARG italic_m ! end_ARG start_ATOM ⟨ italic_l ( bold_italic_θ ) | end_ATOM and |𝜽⟩=m!⁢|r⁢(𝜽←)⟩ket𝜽𝑚ket𝑟superscript𝜽←\mathinner{|{\bm{\theta}}\rangle}=\sqrt{m!}\mathinner{|{r(\mathrel{\mathop{\bm% {\theta}}\limits^{\vbox to 0.0pt{\kern-1.0pt\hbox{$\scriptstyle\leftarrow$}% \vss}}})}\rangle}start_ATOM | bold_italic_θ ⟩ end_ATOM = square-root start_ARG italic_m ! end_ARG start_ATOM | italic_r ( start_RELOP bold_italic_θ start_POSTSUPERSCRIPT ← end_POSTSUPERSCRIPT end_RELOP ) ⟩ end_ATOM for 𝜽∈ℝm𝜽superscriptℝ𝑚\bm{\theta}\in\mathbb{R}^{m}bold_italic_θ ∈ roman_ℝ start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT.
  48. F. A. Smirnov, Form Factors In Completely Integrable Models Of Quantum Field Theory (World Scientific, 1992).
  49. O. Castro-Alvaredo and A. Fring, Form factors from free fermionic Fock fields, the Federbush model, Nuclear Physics B 618, 437 (2001).
  50. H. Babujian, A. Foerster, and M. Karowski, Exact form factors in integrable quantum field theories: The scaling Z(N)-Ising model, Nuclear Physics B 736, 169 (2006), arxiv:hep-th/0510062 .
  51. A. E. Arinshtein, V. A. Fateyev, and A. B. Zamolodchikov, Quantum S-matrix of the (1 + 1)-dimensional Todd chain, Physics Letters B 87, 389 (1979).
  52. H. Braden and R. Sasaki, The S-matrix coupling dependence for a, d and e affine Toda field theory, Physics Letters B 255, 343 (1991).
  53. T. R. Klassen and E. Melzer, Sine-Gordon =/= Massive Thirring, and Related Heresies, International Journal of Modern Physics A 08, 4131 (1993), arxiv:hep-th/9206114 .
  54. G. Mussardo and P. Simonetti, Stress-Energy Tensor and Ultraviolet Behaviour in Massive Integrable Quantum Field Theories, International Journal of Modern Physics A 09, 3307 (1994), arxiv:hep-th/9308057 .
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube