Papers
Topics
Authors
Recent
Search
2000 character limit reached

Family Puzzle, Framing Topology, $c_-=24$ and 3(E8)$_1$ Conformal Field Theories: 48/16 = 45/15 = 24/8 =3

Published 22 Dec 2023 in hep-th, cond-mat.str-el, hep-lat, hep-ph, math-ph, and math.MP | (2312.14928v1)

Abstract: Family Puzzle or Generation Problem demands an explanation of why there are 3 families or generations of quarks and leptons in the Standard Model of particle physics. Here we propose a novel solution -- the multiple of 3 families of 16 Weyl fermions (namely $(N_f=3) \times 16$) in the 3+1d spacetime dimensions are topologically robust due to constraints rooted in profound mathematics (such as Hirzebruch signature and Rokhlin theorems, and cobordism) and derivable in physics (such as chiral edge states, quantized thermal Hall conductance, and gravitational Chern-Simons theory), which holds true even forgetting or getting rid of any global symmetry or gauge structure of the Standard Model. By the dimensional reduction through a sequence of sign-reversing mass domain wall of domain wall and so on, we reduce the Standard Model fermions to obtain the $(N_f=3) \times 16$ multiple of 1+1d Majorana-Weyl fermion with a total chiral central charge $c_-=24$. Effectively via the fermionization-bosonization, the 1+1d theory becomes 3 copies of $c_-=8$ of (E$8)_1$ conformal field theory, living on the boundary of 3 copies of 2+1d E$_8$ quantum Hall states. Based on the framing anomaly-free $c- = 0 \mod 24$ modular invariance, the framed bordism and string bordism $\mathbb{Z}{24}$ class, the 2-framing and $p_1$-structure, the $w_1$-$p_1$ bordism $\mathbb{Z}_3$ class constraints, we derive the family number constraint $N_f \in (\frac{48}{16} =\frac{24}{8}=3) \mathbb{Z}$. The dimensional reduction process, although not necessary, is sufficiently supported by the $\mathbb{Z}{16}$ class Smith homomorphism. We also comment on the $\frac{45}{15}=3$ relation: the 3 families of 15 Weyl-fermion Standard Model vacuum where the absence of some sterile right-handed neutrinos is fulfilled by additional topological field theories or conformal field theories in Ultra Unification.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (76)
  1. H. Harari, “Three generations of quarks and leptons,” in Presented at 5th Intern. Conf. on Exptl. Meson Spectry (1977) pp. 29–30.
  2. Makoto Kobayashi and Toshihide Maskawa, “CP Violation in the Renormalizable Theory of Weak Interaction,” Prog. Theor. Phys. 49, 652–657 (1973).
  3. F. Abe et al. (CDF), “Observation of top quark production in p¯⁢p¯𝑝𝑝\bar{p}pover¯ start_ARG italic_p end_ARG italic_p collisions,” Phys. Rev. Lett. 74, 2626–2631 (1995), arXiv:hep-ex/9503002 .
  4. S. Abachi et al. (D0), “Observation of the top quark,” Phys. Rev. Lett. 74, 2632–2637 (1995), arXiv:hep-ex/9503003 .
  5. Otto Eberhardt, Geoffrey Herbert, Heiko Lacker, Alexander Lenz, Andreas Menzel, Ulrich Nierste,  and Martin Wiebusch, “Impact of a Higgs boson at a mass of 126 GeV on the standard model with three and four fermion generations,” Phys. Rev. Lett. 109, 241802 (2012), arXiv:1209.1101 [hep-ph] .
  6. D. Decamp et al. (ALEPH), “Determination of the Number of Light Neutrino Species,” Phys. Lett. B 231, 519–529 (1989).
  7. S. Schael et al. (ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group), “Precision electroweak measurements on the Z𝑍Zitalic_Z resonance,” Phys. Rept. 427, 257–454 (2006), arXiv:hep-ex/0509008 .
  8. C. L. Bennett et al. (WMAP), “Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results,” Astrophys. J. Suppl. 208, 20 (2013), arXiv:1212.5225 [astro-ph.CO] .
  9. Zheyan Wan, Juven Wang,  and Xiao-Gang Wen, “(3+1)d boundaries with gravitational anomaly of (4+1)d invertible topological order for branch-independent bosonic systems,” Phys. Rev. B 106, 045127 (2022), arXiv:2112.12148 [cond-mat.str-el] .
  10. F. Hirzebruch, Topological Methods in Algebraic Geometry, Classics in mathematics (Springer-Verlag, 1954, 1978).
  11. Pavel Putrov and Juven Wang, ‘‘Categorical Symmetry of the Standard Model from Gravitational Anomaly,”   (2023), arXiv:2302.14862 [hep-th] .
  12. Edward Witten, “Quantum Field Theory and the Jones Polynomial,” Commun. Math. Phys. 121, 351–399 (1989).
  13. Zheyan Wan, Juven Wang, Shing-Tung Yau,  and Yi-Zhuang You, “C-R-T Fractionalization, Fermions, and Mod 8 Periodicity,” to appear  (to appear).
  14. R. Jackiw and C. Rebbi, “Solitons with Fermion Number 1/2,” Phys. Rev. D 13, 3398–3409 (1976).
  15. Curtis G. Callan, Jr. and Jeffrey A. Harvey, “Anomalies and Fermion Zero Modes on Strings and Domain Walls,” Nucl. Phys. B250, 427–436 (1985).
  16. Itamar Hason, Zohar Komargodski,  and Ryan Thorngren, “Anomaly Matching in the Symmetry Broken Phase: Domain Walls, CPT, and the Smith Isomorphism,” SciPost Phys. 8, 062 (2020), arXiv:1910.14039 [hep-th] .
  17. Clay Córdova, Kantaro Ohmori, Shu-Heng Shao,  and Fei Yan, “Decorated ℤ2subscriptℤ2\mathbb{Z}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT symmetry defects and their time-reversal anomalies,” Phys. Rev. D 102, 045019 (2020), arXiv:1910.14046 [hep-th] .
  18. Juven Wang, Yi-Zhuang You,  and Yunqin Zheng, “Gauge enhanced quantum criticality and time reversal deconfined domain wall: SU(2) Yang-Mills dynamics with topological terms,” Phys. Rev. Research. 2, 013189 (2020), arXiv:1910.14664 [cond-mat.str-el] .
  19. Arun Debray, Sanath K. Devalapurkar, Cameron Krulewski, Yu Leon Liu, Natalia Pacheco-Tallaj,  and Ryan Thorngren, “A Long Exact Sequence in Symmetry Breaking: order parameter constraints, defect anomaly-matching, and higher Berry phases,”  (2023), arXiv:2309.16749 [hep-th] .
  20. David B. Kaplan, “A Method for simulating chiral fermions on the lattice,” Phys. Lett. B 288, 342–347 (1992), arXiv:hep-lat/9206013 .
  21. Daniel S. Freed, “Bordism: Old and new,”   (2003), online: https://web.ma.utexas.edu/users/dafr/bordism.pdf.
  22. Daniel S. Freed and Michael J. Hopkins, “Reflection positivity and invertible topological phases,” arXiv e-prints , arXiv:1604.06527 (2016), arXiv:1604.06527 [hep-th] .
  23. M. F. Atiyah, V. K. Patodi,  and I. M. Singer, “Spectral asymmetry and Riemannian geometry 1,” Math. Proc. Cambridge Phil. Soc. 77, 43 (1975).
  24. Anton Kapustin, “Symmetry Protected Topological Phases, Anomalies, and Cobordisms: Beyond Group Cohomology,”   (2014), arXiv:1403.1467 [cond-mat.str-el] .
  25. Anton Kapustin, Ryan Thorngren, Alex Turzillo,  and Zitao Wang, “Fermionic Symmetry Protected Topological Phases and Cobordisms,” JHEP 12, 052 (2015), [JHEP12,052(2015)], arXiv:1406.7329 [cond-mat.str-el] .
  26. Meng Guo, Pavel Putrov,  and Juven Wang, “Time reversal, SU(N) Yang-Mills and cobordisms: Interacting topological superconductors/insulators and quantum spin liquids in 3 + 1 D,” Annals of Physics 394, 244–293 (2018), arXiv:1711.11587 [cond-mat.str-el] .
  27. Zheyan Wan and Juven Wang, “Higher Anomalies, Higher Symmetries, and Cobordisms I: Classification of Higher-Symmetry-Protected Topological States and Their Boundary Fermionic/Bosonic Anomalies via a Generalized Cobordism Theory,” Ann. Math. Sci. Appl. 4, 107–311 (2019), arXiv:1812.11967 [hep-th] .
  28. Edward Witten and Kazuya Yonekura, “Anomaly Inflow and the η𝜂\etaitalic_η-Invariant,” in The Shoucheng Zhang Memorial Workshop Stanford, CA, USA, May 2-4, 2019 (2019) arXiv:1909.08775 [hep-th] .
  29. Luis Alvarez-Gaume and Edward Witten, “Gravitational Anomalies,” Nucl. Phys. B 234, 269 (1984).
  30. Edward Witten, “Global Gravitational Anomalies,” Commun. Math. Phys. 100, 197 (1985), [,197(1985)].
  31. Edward Witten, “An SU(2) Anomaly,” Phys. Lett. 117B, 324–328 (1982), [,230(1982)].
  32. Juven Wang, Xiao-Gang Wen,  and Edward Witten, “A New SU(2) Anomaly,” J. Math. Phys. 60, 052301 (2019), arXiv:1810.00844 [hep-th] .
  33. Michael Atiyah, “On framings of 3-manifolds,” Topology 29, 1–7 (1990).
  34. Daniel S. Freed, “The Atiyah-Singer index theorem,” Bull. Am. Math. Soc. 58, 517–566 (2021), arXiv:2107.03557 [math.HO] .
  35. Vladimir Rokhlin, “New results in the theory of four-dimensional manifolds,” Doklady Akademii Nauk SSSR 84, 221–224 (1952).
  36. Steven Weinberg, The quantum theory of fields. Vol. 2: Modern applications (Cambridge University Press, 2013).
  37. P. A. Smith, “New results and old problems in finite transformation groups,” Bulletin of the American Mathematical Society 66, 401–415 (1960).
  38. A. Kitaev, “Anyons in an exactly solved model and beyond,” Annals of Physics 321, 2–111 (2006), cond-mat/0506438 .
  39. Nathan Seiberg and Edward Witten, “Gapped Boundary Phases of Topological Insulators via Weak Coupling,” PTEP 2016, 12C101 (2016), arXiv:1602.04251 [cond-mat.str-el] .
  40. Juven Wang and et al, “Generation Problem, Gravitational Chern-Simons, String Cobordism, and Modularity: 4816=4515=248=3481645152483\frac{48}{16}=\frac{45}{15}=\frac{24}{8}=3divide start_ARG 48 end_ARG start_ARG 16 end_ARG = divide start_ARG 45 end_ARG start_ARG 15 end_ARG = divide start_ARG 24 end_ARG start_ARG 8 end_ARG = 3,” to appear  (to appear).
  41. Lev Pontryagin, “A classification of mappings of the three-dimensional complex into the two-dimensional sphere,” Doklady Akademii Nauk SSSR 31, 129–132 (1941).
  42. Lev Pontryagin, “Smooth manifolds and their applications in homotopy theory,” American Mathematical Society Translations, Series 2 11, 1–114 (1950).
  43. René Thom, Espaces fibrés en sphères et carrés de Steenrod, Ph.D. thesis (1952).
  44. René Thom, “Quelques propriétés globales des variétés différentiables,” Commentarii Mathematici Helvetici 28, 17–86 (1954).
  45. Frank Wilczek and A. Zee, “Operator Analysis of Nucleon Decay,” Phys. Rev. Lett. 43, 1571–1573 (1979a).
  46. Frank Wilczek and A. Zee, “Conservation or Violation of B - L in Proton Decay,” Phys. Lett. B 88, 311–314 (1979b).
  47. R. C. Kirby and L. R. Taylor, “Pin structures on low-dimensional manifolds,” in Geometry of low-dimensional manifolds, 2 (Durham, 1989), London Math. Soc. Lecture Note Ser., Vol. 151 (Cambridge Univ. Press, Cambridge, 1990) pp. 177–242.
  48. Yuji Tachikawa and Kazuya Yonekura, “Why are fractional charges of orientifolds compatible with Dirac quantization?” arXiv e-prints , arXiv:1805.02772 (2018), arXiv:1805.02772 [hep-th] .
  49. Inaki Garcia-Etxebarria and Miguel Montero, ‘‘Dai-Freed anomalies in particle physics,” JHEP 08, 003 (2019), arXiv:1808.00009 [hep-th] .
  50. Chang-Tse Hsieh, “Discrete gauge anomalies revisited,”   (2018), arXiv:1808.02881 [hep-th] .
  51. Meng Guo, Kantaro Ohmori, Pavel Putrov, Zheyan Wan,  and Juven Wang, “Fermionic Finite-Group Gauge Theories and Interacting Symmetric/Crystalline Orders via Cobordisms,” Commun. Math. Phys. 376, 1073 (2020), arXiv:1812.11959 [hep-th] .
  52. Zheyan Wan and Juven Wang, “Beyond Standard Models and Grand Unifications: Anomalies, Topological Terms, and Dynamical Constraints via Cobordisms,” JHEP 07, 062 (2020), arXiv:1910.14668 [hep-th] .
  53. Juven Wang, “Anomaly and Cobordism Constraints Beyond the Standard Model: Topological Force,”   (2020a), arXiv:2006.16996 [hep-th] .
  54. Juven Wang, “Anomaly and Cobordism Constraints Beyond Grand Unification: Energy Hierarchy,”   (2020b), arXiv:2008.06499 [hep-th] .
  55. Juven Wang, “Ultra Unification,” Phys. Rev. D 103, 105024 (2021), arXiv:2012.15860 [hep-th] .
  56. Juven Wang, Zheyan Wan,  and Yi-Zhuang You, “Cobordism and deformation class of the standard model,” Phys. Rev. D 106, L041701 (2022a), arXiv:2112.14765 [hep-th] .
  57. Juven Wang, Zheyan Wan,  and Yi-Zhuang You, “Proton stability: From the standard model to beyond grand unification,” Phys. Rev. D 106, 025016 (2022b), arXiv:2204.08393 [hep-ph] .
  58. Lukasz Fidkowski, Xie Chen,  and Ashvin Vishwanath, “Non-Abelian Topological Order on the Surface of a 3D Topological Superconductor from an Exactly Solved Model,” Phys. Rev. X 3, 041016 (2013), arXiv:1305.5851 [cond-mat.str-el] .
  59. C. Wang and T. Senthil, “Interacting fermionic topological insulators/superconductors in three dimensions,” Phys. Rev. B 89, 195124 (2014), arXiv:1401.1142 [cond-mat.str-el] .
  60. Shiing-Shen Chern, “Characteristic classes of hermitian manifolds,” Annals of Mathematics 47, 85–121 (1946).
  61. L.S. Pontryagin, “Characteristic classes of differentiable manifolds,” Mat. Sb. 21, 233–284 (1947).
  62. T. Senthil, “Symmetry-Protected Topological Phases of Quantum Matter,” Annual Review of Condensed Matter Physics 6, 299–324 (2015), arXiv:1405.4015 [cond-mat.str-el] .
  63. C. L. Kane and Matthew P. A. Fisher, “Quantized thermal transport in the fractional quantum Hall effect,” Phys. Rev. B 55, 15832–15837 (1997), arXiv:cond-mat/9603118 .
  64. Juven Wang and Yi-Zhuang You, “Symmetric Mass Generation,” Symmetry 14, 1475 (2022), arXiv:2204.14271 [cond-mat.str-el] .
  65. Xiao-Gang Wen, “A lattice non-perturbative definition of an SO(10) chiral gauge theory and its induced standard model,” Chin. Phys. Lett. 30, 111101 (2013), arXiv:1305.1045 [hep-lat] .
  66. Yi-Zhuang You and Cenke Xu, “Interacting topological insulator and emergent grand unified theory,” Phys. Rev. B 91, 125147 (2015), arXiv:1412.4784 .
  67. Yoshio Kikukawa, ‘‘On the gauge invariant path-integral measure for the overlap Weyl fermions in 16¯¯16\underline{16}under¯ start_ARG 16 end_ARG of SO(10),” PTEP 2019, 113B03 (2019), arXiv:1710.11618 [hep-lat] .
  68. Juven Wang and Xiao-Gang Wen, “A Non-Perturbative Definition of the Standard Models,” Phys. Rev. Res. 2, 023356 (2020), arXiv:1809.11171 [hep-th] .
  69. Shlomo S. Razamat and David Tong, “Gapped Chiral Fermions,” Phys. Rev. X 11, 011063 (2021), arXiv:2009.05037 [hep-th] .
  70. Juven Wang, “Strong CP Problem and Symmetric Interacting Mass Solution,”   (2022a), arXiv:2212.14036 [hep-ph] .
  71. Juven Wang, “CT or P problem and symmetric gapped fermion solution,” Phys. Rev. D 106, 125007 (2022b), arXiv:2207.14813 [hep-th] .
  72. Gregory W. Moore and N. Read, “Nonabelions in the fractional quantum Hall effect,” Nucl. Phys. B 360, 362–396 (1991).
  73. Bogdan A. Dobrescu and Erich Poppitz, “Number of fermion generations derived from anomaly cancellation,” Phys. Rev. Lett. 87, 031801 (2001), arXiv:hep-ph/0102010 .
  74. A. N. Schellekens, “Meromorphic c = 24 conformal field theories,” Commun. Math. Phys. 153, 159–186 (1993), arXiv:hep-th/9205072 .
  75. Maryna Viazovska, “The sphere packing problem in dimension 8,” arXiv e-prints , arXiv:1603.04246 (2016), arXiv:1603.04246 [math.NT] .
  76. Henry Cohn, Abhinav Kumar, Stephen D. Miller, Danylo Radchenko,  and Maryna Viazovska, “The sphere packing problem in dimension 24,” arXiv e-prints , arXiv:1603.06518 (2016), arXiv:1603.06518 [math.NT] .

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.