Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Simulating a two component Bose-Hubbard model with imbalanced hopping in a Rydberg tweezer array (2312.14846v2)

Published 22 Dec 2023 in cond-mat.quant-gas and quant-ph

Abstract: Optical tweezer arrays of neutral atoms provide a versatile platform for quantum simulation due to the range of interactions and Hamiltonians that can be realized and explored. We propose to simulate a two-component Bose-Hubbard model with power-law hopping using arrays of multilevel Rydberg atoms featuring resonant dipolar interactions. The diversity of states that can be used to encode the local Hilbert space of the Bose-Hubbard model enables control of the relative hopping rate of each component and even the realization of spin-flip hopping. We use numerical simulations to show how multilevel Rydberg atoms provide an opportunity to explore the diverse non-equilibrium quench dynamics of the model. For example, we demonstrate a separation of the relaxation timescales of effective spin and charge degrees of freedom, and observe regimes of slow relaxation when the effective hopping rates of the two components are vastly different due to dynamical constraints arising from hardcore boson interactions. We discuss prospects for studying these effects in state-of-the-art Rydberg tweezer arrays.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. M. Morgado and S. Whitlock, AVS Quantum Science 3 (2021).
  2. A. M. Kaufman and K.-K. Ni, Nature Physics 17, 1324 (2021).
  3. T. Ozawa and H. M. Price, Nature Reviews Physics 1, 349 (2019).
  4. K. R. Hazzard and B. Gadway, Physics Today 76, 62 (2023).
  5. T. Grover and M. P. A. Fisher, Journal of Statistical Mechanics: Theory and Experiment 2014, P10010 (2014).
  6. J. Sirker, Phys. Rev. B 99, 075162 (2019).
  7. Operationally, this is achieved by using a ring geometry and artificially defining ri⁢jsubscript𝑟𝑖𝑗r_{ij}italic_r start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT as the arc length between site i𝑖iitalic_i and j𝑗jitalic_j to mimic 1111D. The former aspect is motivated by a recent experimental realization of periodic boundaries with tweezers Scholl et al. (2022).
  8. Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed. (Society for Industrial and Applied Mathematics, 2003) https://epubs.siam.org/doi/pdf/10.1137/1.9780898718003 .
  9. W. Zheng and Z.-Y. Weng, Scientific Reports 8, 3612 (2018).
  10. H. M. Wiseman and J. A. Vaccaro, Phys. Rev. Lett. 91, 097902 (2003).
  11. Note that there is an ambiguity of labelling lattice sites in squeezed space due to the periodic boundary conditions. We choose to always specify site 1111 relative to a fixed location in the full spatial lattice.
  12. M. Ueda, Nature Reviews Physics 2, 669 (2020).
  13. K. Mallayya and M. Rigol, Phys. Rev. Lett. 120, 070603 (2018).
  14. K. Mallayya and M. Rigol, Phys. Rev. B 104, 184302 (2021).
  15. A. P. Luca D’Alessio, Yariv Kafri and M. Rigol, Advances in Physics 65, 239 (2016), https://doi.org/10.1080/00018732.2016.1198134 .
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 2 likes.