2000 character limit reached
Planar $3$-webs and the boundary measurement matrix (2312.14761v1)
Published 22 Dec 2023 in math.PR, math-ph, and math.MP
Abstract: We compute connection probabilities for reduced $3$-webs in the triple-dimer model on circular planar graphs using the boundary measurement matrix (reduced Kasteleyn matrix). As one application we compute several "$\text{SL}_3$ generalizations'' of the Lindstr{\o}m-Gessel-Viennot theorem, for "parallel" webs and for honeycomb webs. We also apply our results to the scaling limit of the dimer model in a planar domain, giving conformally invariant expressions for reduced web probabilities.
- R. J. Baxter. Colorings of a hexagonal lattice. J. Mathematical Phys., 11:784–789, 1970.
- Tau-functions à la Dubédat and probabilities of cylindrical events for double-dimers and CLE(4)CLE4\rm CLE(4)roman_CLE ( 4 ). J. Eur. Math. Soc. (JEMS), 23(8):2787–2832, 2021.
- P. Di Francesco. SU(N)SU𝑁{\rm SU}(N)roman_SU ( italic_N ) meander determinants. J. Math. Phys., 38(11):5905–5943, 1997.
- Dimers, webs and local systems. 2022.
- Julien Dubédat. Double dimers, conformal loop ensembles and isomonodromic deformations. J. Eur. Math. Soc. (JEMS), 21(1):1–54, 2019.
- From dimers to webs. Trans. Amer. Math. Soc., 371:6087–6124, 2019.
- Sergey Fomin. Loop-erased walks and total positivity. Trans. Amer. Math. Soc., 353(9):3563–3583, 2001.
- Dimers and cluster integrable systems. Ann. Sci. Éc. Norm. Supér. (4), 46(5):747–813, 2013.
- P. W. Kasteleyn. The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice. Physica, 27:1209–1225, 1961.
- Richard Kenyon. Conformal invariance of domino tiling. Ann. Probab., 28(2):759–795, 2000.
- R. Kenyon. Lectures on dimers. In Statistical mechanics, volume 16 of IAS/Park City Math. Ser., pages 191–230. Amer. Math. Soc., Providence, RI, 2009.
- R. Kenyon. Conformal invariance of loops in the double-dimer model. Comm. Math. Phys., 326:477–497, 2014.
- A combinatorial matrix in 3333-manifold theory. Pacific J. Math., 149(2):319–336, 1991.
- G. Kuperberg. Spiders for rank 2 Lie algebras. Comm. Math. Phys., 180:109–151, 1996.
- Boundary partitions in trees and dimers. Trans. Amer. Math. Soc., 363(3):1325–1364, 2011.
- Thomas Lam. Dimers, webs, and positroids. J. Lond. Math. Soc. (2), 92(3):633–656, 2015.
- Uniform spanning tree in topological polygons, partition functions for SLE(8)SLE8\text{SLE}(8)SLE ( 8 ), and correlations in c=2𝑐2c=2italic_c = 2 logarithmic cft.
- Alexander Postnikov. Total positivity, grassmannians, and networks.
- Promotion and cyclic sieving via webs. J. Algebraic Combin., 30(1):19–41, 2009.
- Pavlo Pylyavskyy. A2subscript𝐴2A_{2}italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-web immanants. Discrete Math., 310(15-16):2183–2197, 2010.
- A. S. Sikora. SLnsubscriptSL𝑛\mathrm{SL}_{n}roman_SL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT-character varieties as spaces of graphs. Trans. Amer. Math. Soc., 353:2773–2804, 2001.
- Richard P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.