Boundary Liouville Conformal Field Theory in Four Dimensions (2312.14744v2)
Abstract: Higher dimensional Euclidean Liouville conformal field theories (LCFTs) consist of a log-correlated real scalar field with a background charge and an exponential potential. We analyse the LCFT on a four-dimensional manifold with a boundary. We extend to the boundary, the conformally covariant GJMS operator and the ${\cal Q}$-curvature term in the LCFT action and classify the conformal boundary conditions. Working on a flat space with plate boundary, we calculate the dimensions of the boundary conformal primary operators, the two- and three-point functions of the displacement operator and the boundary conformal anomaly coefficients.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.