Papers
Topics
Authors
Recent
2000 character limit reached

Numerical evidence for fractional topological objects in SU(3) gauge theory (2312.14340v2)

Published 22 Dec 2023 in hep-lat, hep-ph, and nucl-th

Abstract: The continued development of models that propose the existence of fractional topological objects in the Yang-Mills vacuum has called for a quantitative method to study the topological structure of $\mathrm{SU}(N)$ gauge theory. We present an original numerical algorithm that can identify distinct topological objects in the nontrivial ground-state fields and approximate the net charge contained within them. This analysis is performed for $\mathrm{SU(3)}$ colour at a range of temperatures crossing the deconfinement phase transition, allowing for an assessment of how the topological structure evolves with temperature. We find a promising consistency with the instanton-dyon model for the structure of the QCD vacuum at finite temperature. Several other quantities, such as object density and radial size, are also analysed to elicit a further understanding of the fundamental structure of ground-state gluon fields.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (72)
  1. H. G. Dosch and Y. A. Simonov, The area law of the Wilson loop and vacuum field correlators, Phys. Lett. B 205, 339 (1988).
  2. C. A. Aubin and M. C. Ogilvie, Lattice gauge fixing and the violation of spectral positivity, Phys. Lett. B 570, 59 (2003), arXiv:hep-lat/0306012 .
  3. J. C. Biddle, W. Kamleh, and D. B. Leinweber, Impact of dynamical fermions on the center vortex gluon propagator, Phys. Rev. D 106, 014506 (2022), arXiv:2206.02320 [hep-lat] .
  4. E. V. Shuryak, The role of instantons in quantum chromodynamics: (I). Physical vacuum, Nucl. Phys. B 203, 93 (1982a).
  5. E. V. Shuryak, The role of instantons in quantum chromodynamics: (II). Hadronic structure, Nucl. Phys. B 203, 116 (1982b).
  6. E. V. Shuryak, The role of instantons in quantum chromodynamics: (III). Quark-gluon plasma, Nucl. Phys. B 203, 140 (1982c).
  7. E. V. Shuryak, Instantons in QCD: (III). Quark propagators and mesons containing heavy quarks, Nucl. Phys. B 328, 85 (1989).
  8. D. Diakonov, V. Y. Petrov, and P. V. Pobylitsa, The Wilson loop and heavy-quark potential in the instanton vacuum, Phys. Lett. B 226, 372 (1989).
  9. T. Schäfer and E. V. Shuryak, Instantons in QCD, Rev. Mod. Phys. 70, 323 (1998), arXiv:hep-ph/9610451 .
  10. G. ’t Hooft, Some twisted self-dual solutions for the Yang-Mills equations on a hypertorus, Commun. Math. Phys. 81, 267 (1981).
  11. A. González-Arroyo, P. Martínez, and A. Montero, Gauge invariant structures and confinement, Phys. Lett. B 359, 159 (1995), arXiv:hep-lat/9507006 .
  12. A. González-Arroyo and P. Martínez, Investigating Yang-Mills theory and confinement as a function of the spatial volume, Nucl. Phys. B 459, 337 (1996), arXiv:hep-lat/9507001 .
  13. M. García Pérez, A. González-Arroyo, and B. Söderberg, Minimum action solutions for SU(2) gauge theory on the torus with non-orthogonal twist, Phys. Lett. B 235, 117 (1990).
  14. M. García Pérez and A. González-Arroyo, Numerical study of Yang-Mills classical solutions on the twisted torus, J. Phys. A 26, 2667 (1993), arXiv:hep-lat/9206016 .
  15. A. Montero, Numerical analysis of fractional charge solutions on the torus, J. High Energy Phys. 05, 022 (2000), arXiv:hep-lat/0004009 .
  16. A. González-Arroyo, On the fractional instanton liquid picture of the Yang-Mills vacuum and Confinement,   (2023), arXiv:2302.12356 [hep-th] .
  17. A. González-Arroyo, Constructing SU(N𝑁Nitalic_N) fractional instantons, J. High Energy Phys. 02, 137 (2020), arXiv:1910.12565 [hep-th] .
  18. M. M. Anber and E. Poppitz, Multi-fractional instantons in SU(N𝑁Nitalic_N) Yang-Mills theory on the twisted 𝕋4superscript𝕋4\mathbb{T}^{4}blackboard_T start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT, J. High Energy Phys. 09, 095 (2023), arXiv:2307.04795 [hep-th] .
  19. K.-M. Lee, Instantons and magnetic monopoles on R3×S1superscript𝑅3superscript𝑆1R^{3}\times S^{1}italic_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT × italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT with arbitrary simple gauge groups, Phys. Lett. B 426, 323 (1998), arXiv:hep-th/9802012 .
  20. K.-M. Lee and C.-h. Lu, SU(2) calorons and magnetic monopoles, Phys. Rev. D 58, 025011 (1998), arXiv:hep-th/9802108 .
  21. T. C. Kraan and P. van Baal, Monopole constituents inside S⁢U⁢(n)𝑆𝑈𝑛SU(n)italic_S italic_U ( italic_n ) calorons, Phys. Lett. B 435, 389 (1998a), arXiv:hep-th/9806034 .
  22. T. C. Kraan and P. van Baal, Periodic instantons with non-trivial holonomy, Nucl. Phys. B 533, 627 (1998b), arXiv:hep-th/9805168 .
  23. D. Diakonov and V. Petrov, Confining ensemble of dyons, Phys. Rev. D 76, 056001 (2007), arXiv:0704.3181 [hep-th] .
  24. D. Diakonov and V. Petrov, Confinement and deconfinement for any gauge group from dyons viewpoint, AIP Conf. Proc. 1343, 69 (2011), arXiv:1011.5636 [hep-th] .
  25. Y. Liu, E. Shuryak, and I. Zahed, Confining dyon-antidyon Coulomb liquid model. I., Phys. Rev. D 92, 085006 (2015), arXiv:1503.03058 [hep-ph] .
  26. E. Shuryak and T. Sulejmanpasic, Holonomy potential and confinement from a simple model of the gauge topology, Phys. Lett. B 726, 257 (2013), arXiv:1305.0796 [hep-ph] .
  27. R. Larsen and E. Shuryak, Interacting ensemble of the instanton-dyons and the deconfinement phase transition in the SU(2) gauge theory, Phys. Rev. D 92, 094022 (2015), arXiv:1504.03341 [hep-ph] .
  28. M. A. Lopez-Ruiz, Y. Jiang, and J. Liao, Confinement from correlated instanton-dyon ensemble in SU(2) Yang-Mills theory, Phys. Rev. D 99, 114013 (2019), arXiv:1903.02684 [hep-ph] .
  29. D. DeMartini and E. Shuryak, Deconfinement phase transition in the S⁢U⁢(3)𝑆𝑈3SU(3)italic_S italic_U ( 3 ) instanton-dyon ensemble, Phys. Rev. D 104, 054010 (2021), arXiv:2102.11321 [hep-ph] .
  30. A. González-Arroyo and A. Montero, Self-dual vortex-like configurations in SU(2) Yang-Mills theory, Phys. Lett. B 442, 273 (1998), arXiv:hep-th/9809037 .
  31. A. Montero, Study of SU(3) vortex-like configurations with a new maximal center gauge fixing method, Phys. Lett. B 467, 106 (1999), arXiv:hep-lat/9906010 .
  32. A. Montero, Vortex configurations in the large N𝑁Nitalic_N limit, Phys. Lett. B 483, 309 (2000b), arXiv:hep-lat/0004002 .
  33. J. Dasilva Golán and M. García Pérez, SU(N𝑁Nitalic_N) fractional instantons and the Fibonacci sequence, J. High Energy Phys. 12, 109 (2022), arXiv:2208.07133 [hep-th] .
  34. V. P. Nair and R. D. Pisarski, Fractional topological charge in S⁢U⁢(N)𝑆𝑈𝑁SU(N)italic_S italic_U ( italic_N ) gauge theories without dynamical quarks, Phys. Rev. D 108, 074007 (2023), arXiv:2206.11284 [hep-th] .
  35. E. M. Ilgenfritz, B. V. Martemyanov, and M. Müller-Preussker, Topology near the transition temperature in lattice gluodynamics analyzed by low lying modes of the overlap Dirac operator, Phys. Rev. D 89, 054503 (2014), arXiv:1309.7850 [hep-lat] .
  36. V. G. Bornyakov, E. M. Ilgenfritz, and B. V. Martemyanov, Dyons near the transition temperature in S⁢U⁢(3)𝑆𝑈3SU(3)italic_S italic_U ( 3 ) lattice gluodynamics, J. Phys. G 45, 055006 (2018), arXiv:1711.04476 [hep-lat] .
  37. D. B. Leinweber, Visualizations of the QCD vacuum, in Proceedings of the Workshop on Lightcone QCD and Nonperturbative Hadron Physics (World Scientific Publishing, Singapore, 2001) pp. 138–143, arXiv:hep-lat/0004025 .
  38. B. Berg, Dislocations and topological background in the lattice O(3) σ𝜎\sigmaitalic_σ-model, Phys. Lett. B 104, 475 (1981).
  39. M. Teper, Instantons in the quantized SU(2) vacuum: A lattice Monte Carlo investigation, Phys. Lett. B 162, 357 (1985).
  40. S. O. Bilson-Thompson, D. B. Leinweber, and A. G. Williams, Highly improved lattice field-strength tensor, Ann. Phys. 304, 1 (2003), arXiv:hep-lat/0203008 .
  41. E. Witten, Some Exact Multipseudoparticle Solutions of Classical Yang-Mills Theory, Phys. Rev. Lett. 38, 121 (1977).
  42. M. García Pérez, T. G. Kovács, and P. van Baal, Instanton size distribution, Phys. Lett. B 472, 295 (2000a), arXiv:hep-ph/9911485 .
  43. M. García Pérez, T. G. Kovács, and P. van Baal, Overlapping instantons, in Proceedings of the 4th Workshop on Continuous Advances in QCD (World Scientific Publishing, Singapore, 2000) pp. 79–89, arXiv:hep-ph/0006155 .
  44. M. Albanese et al. (APE Collaboration), Glueball masses and string tension in lattice QCD, Phys. Lett. B 192, 163 (1987).
  45. C. Morningstar and M. J. Peardon, Analytic smearing of SU(3) link variables in lattice QCD, Phys. Rev. D 69, 054501 (2004), arXiv:hep-lat/0311018 .
  46. M. Lüscher, Trivializing Maps, the Wilson Flow and the HMC Algorithm, Commun. Math. Phys. 293, 899 (2010a), arXiv:0907.5491 [hep-lat] .
  47. M. Lüscher, Properties and uses of the Wilson flow in lattice QCD, J. High Energy Phys. 08, 071 (2010), [Erratum: J. High Energy Phys. 03, 092 (2014)], arXiv:1006.4518 [hep-lat] .
  48. P. J. Moran and D. B. Leinweber, Over-improved stout-link smearing, Phys. Rev. D 77, 094501 (2008), arXiv:0801.1165 [hep-lat] .
  49. C. Bonati and M. D’Elia, Comparison of the gradient flow with cooling in S⁢U⁢(3)𝑆𝑈3SU(3)italic_S italic_U ( 3 ) pure gauge theory, Phys. Rev. D 89, 105005 (2014), arXiv:1401.2441 [hep-lat] .
  50. S. D. Thomas, W. Kamleh, and D. B. Leinweber, Instanton contributions to the low-lying hadron mass spectrum, Phys. Rev. D 92, 094515 (2015), arXiv:1410.7105 [hep-lat] .
  51. M. Nagatsuka, K. Sakai, and S. Sasaki, Equivalence between the Wilson flow and stout-link smearing, Phys. Rev. D 108, 094506 (2023), arXiv:2303.09938 [hep-lat] .
  52. P. de Forcrand, M. Garcïa Përez, and I.-O. Stamatescu, Topology of the SU(2) vacuum: a lattice study using improved cooling, Nucl. Phys. B 499, 409 (1997), arXiv:hep-lat/9701012 .
  53. P. de Forcrand, M. Garcïa Përez, and I.-O. Stamatescu, Improved cooling algorithm for gauge theories, Nucl. Phys. B Proc. Suppl. 47, 777 (1996), arXiv:hep-lat/9509064 .
  54. F. Karsch, Lattice QCD at finite temperature and density, Nucl. Phys. B Proc. Suppl. 83, 14 (2000), arXiv:hep-lat/9909006 .
  55. W. Kamleh, D. B. Leinweber, and A. G. Williams, Hybrid Monte Carlo algorithm with fat link fermion actions, Phys. Rev. D 70, 014502 (2004), arXiv:hep-lat/0403019 .
  56. Y. Iwasaki, Renormalization Group Analysis of Lattice Theories and Improved Lattice Action. II. Four-dimensional non-Abelian SU(N) gauge model,  (1983), arXiv:1111.7054 [hep-lat] .
  57. L. D. McLerran and B. Svetitsky, Quark liberation at high temperature: A Monte Carlo study of SU(2) gauge theory, Phys. Rev. D 24, 450 (1981).
  58. C. Gattringer and A. Schmidt, Center clusters in the Yang-Mills vacuum, J. High Energy Phys. 01, 051 (2011), arXiv:1011.2329 [hep-lat] .
  59. F. M. Stokes, W. Kamleh, and D. B. Leinweber, Visualizations of coherent center domains in local Polyakov loops, Ann. Phys. 348, 341 (2014), arXiv:1312.0991 [hep-lat] .
  60. F. Bruckmann and P. van Baal, Multi-caloron solutions, Nucl. Phys. B 645, 105 (2002), arXiv:hep-th/0209010 .
  61. F. Bruckmann, D. Nógrádi, and P. van Baal, Constituent monopoles through the eyes of fermion zero-modes, Nucl. Phys. B 666, 197 (2003), arXiv:hep-th/0305063 .
  62. F. Bruckmann, D. Nógrádi, and P. van Baal, Higher charge calorons with non-trivial holonomy, Nucl. Phys. B 698, 233 (2004), arXiv:hep-th/0404210 .
  63. D. Nogradi, Multi-calorons and their moduli, Ph.D. thesis (2005), arXiv:hep-th/0511125 .
  64. P. Gerhold, E. M. Ilgenfritz, and M. Müller-Preussker, An S⁢U⁢(2)𝑆𝑈2SU(2)italic_S italic_U ( 2 ) KvBLL caloron gas model and confinement, Nucl. Phys. B 760, 1 (2007a), arXiv:hep-ph/0607315 .
  65. P. Gerhold, E.-M. Ilgenfritz, and M. Müller-Preussker, Improved superposition schemes for approximate multi-caloron configurations, Nucl. Phys. B 774, 268 (2007b), arXiv:hep-ph/0610426 .
  66. M. F. Atiyah and I. M. Singer, The index of elliptic operators on compact manifolds, Bull. Am. Math. Soc. 69, 422 (1969).
  67. A. Trewartha, W. Kamleh, and D. Leinweber, Connection between center vortices and instantons through gauge-field smoothing, Phys. Rev. D 92, 074507 (2015), arXiv:1509.05518 [hep-lat] .
  68. I. Soler, G. Bergner, and A. González-Arroyo, Extracting Yang-Mills topological structures with adjoint modes, Proc. Sci. LATTICE2023, 378 (2024), arXiv:2312.06308 [hep-lat] .
  69. A. González-Arroyo and R. Kirchner, Adjoint modes as probes of gauge field structure, J. High Energy Phys. 01, 029 (2006), arXiv:hep-lat/0507036 .
  70. M. García Pérez, A. González-Arroyo, and A. Sastre, Ultraviolet filtering of lattice configurations and applications to Monte Carlo dynamics, J. High Energy Phys. 07, 034 (2011), arXiv:1103.5999 [hep-lat] .
  71. K. G. Wilson, Confinement of quarks, Phys. Rev. D 10, 2445 (1974).
  72. N. Cabibbo and E. Marinari, A new method for updating SU(N𝑁Nitalic_N) matrices in computer simulations of gauge theories, Phys. Lett. B 119, 387 (1982).

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.