Numerical evidence for fractional topological objects in SU(3) gauge theory (2312.14340v2)
Abstract: The continued development of models that propose the existence of fractional topological objects in the Yang-Mills vacuum has called for a quantitative method to study the topological structure of $\mathrm{SU}(N)$ gauge theory. We present an original numerical algorithm that can identify distinct topological objects in the nontrivial ground-state fields and approximate the net charge contained within them. This analysis is performed for $\mathrm{SU(3)}$ colour at a range of temperatures crossing the deconfinement phase transition, allowing for an assessment of how the topological structure evolves with temperature. We find a promising consistency with the instanton-dyon model for the structure of the QCD vacuum at finite temperature. Several other quantities, such as object density and radial size, are also analysed to elicit a further understanding of the fundamental structure of ground-state gluon fields.
- H. G. Dosch and Y. A. Simonov, The area law of the Wilson loop and vacuum field correlators, Phys. Lett. B 205, 339 (1988).
- C. A. Aubin and M. C. Ogilvie, Lattice gauge fixing and the violation of spectral positivity, Phys. Lett. B 570, 59 (2003), arXiv:hep-lat/0306012 .
- J. C. Biddle, W. Kamleh, and D. B. Leinweber, Impact of dynamical fermions on the center vortex gluon propagator, Phys. Rev. D 106, 014506 (2022), arXiv:2206.02320 [hep-lat] .
- E. V. Shuryak, The role of instantons in quantum chromodynamics: (I). Physical vacuum, Nucl. Phys. B 203, 93 (1982a).
- E. V. Shuryak, The role of instantons in quantum chromodynamics: (II). Hadronic structure, Nucl. Phys. B 203, 116 (1982b).
- E. V. Shuryak, The role of instantons in quantum chromodynamics: (III). Quark-gluon plasma, Nucl. Phys. B 203, 140 (1982c).
- E. V. Shuryak, Instantons in QCD: (III). Quark propagators and mesons containing heavy quarks, Nucl. Phys. B 328, 85 (1989).
- D. Diakonov, V. Y. Petrov, and P. V. Pobylitsa, The Wilson loop and heavy-quark potential in the instanton vacuum, Phys. Lett. B 226, 372 (1989).
- T. Schäfer and E. V. Shuryak, Instantons in QCD, Rev. Mod. Phys. 70, 323 (1998), arXiv:hep-ph/9610451 .
- G. ’t Hooft, Some twisted self-dual solutions for the Yang-Mills equations on a hypertorus, Commun. Math. Phys. 81, 267 (1981).
- A. González-Arroyo, P. Martínez, and A. Montero, Gauge invariant structures and confinement, Phys. Lett. B 359, 159 (1995), arXiv:hep-lat/9507006 .
- A. González-Arroyo and P. Martínez, Investigating Yang-Mills theory and confinement as a function of the spatial volume, Nucl. Phys. B 459, 337 (1996), arXiv:hep-lat/9507001 .
- M. García Pérez, A. González-Arroyo, and B. Söderberg, Minimum action solutions for SU(2) gauge theory on the torus with non-orthogonal twist, Phys. Lett. B 235, 117 (1990).
- M. García Pérez and A. González-Arroyo, Numerical study of Yang-Mills classical solutions on the twisted torus, J. Phys. A 26, 2667 (1993), arXiv:hep-lat/9206016 .
- A. Montero, Numerical analysis of fractional charge solutions on the torus, J. High Energy Phys. 05, 022 (2000), arXiv:hep-lat/0004009 .
- A. González-Arroyo, On the fractional instanton liquid picture of the Yang-Mills vacuum and Confinement, (2023), arXiv:2302.12356 [hep-th] .
- A. González-Arroyo, Constructing SU(N𝑁Nitalic_N) fractional instantons, J. High Energy Phys. 02, 137 (2020), arXiv:1910.12565 [hep-th] .
- M. M. Anber and E. Poppitz, Multi-fractional instantons in SU(N𝑁Nitalic_N) Yang-Mills theory on the twisted 𝕋4superscript𝕋4\mathbb{T}^{4}blackboard_T start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT, J. High Energy Phys. 09, 095 (2023), arXiv:2307.04795 [hep-th] .
- K.-M. Lee, Instantons and magnetic monopoles on R3×S1superscript𝑅3superscript𝑆1R^{3}\times S^{1}italic_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT × italic_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT with arbitrary simple gauge groups, Phys. Lett. B 426, 323 (1998), arXiv:hep-th/9802012 .
- K.-M. Lee and C.-h. Lu, SU(2) calorons and magnetic monopoles, Phys. Rev. D 58, 025011 (1998), arXiv:hep-th/9802108 .
- T. C. Kraan and P. van Baal, Monopole constituents inside SU(n)𝑆𝑈𝑛SU(n)italic_S italic_U ( italic_n ) calorons, Phys. Lett. B 435, 389 (1998a), arXiv:hep-th/9806034 .
- T. C. Kraan and P. van Baal, Periodic instantons with non-trivial holonomy, Nucl. Phys. B 533, 627 (1998b), arXiv:hep-th/9805168 .
- D. Diakonov and V. Petrov, Confining ensemble of dyons, Phys. Rev. D 76, 056001 (2007), arXiv:0704.3181 [hep-th] .
- D. Diakonov and V. Petrov, Confinement and deconfinement for any gauge group from dyons viewpoint, AIP Conf. Proc. 1343, 69 (2011), arXiv:1011.5636 [hep-th] .
- Y. Liu, E. Shuryak, and I. Zahed, Confining dyon-antidyon Coulomb liquid model. I., Phys. Rev. D 92, 085006 (2015), arXiv:1503.03058 [hep-ph] .
- E. Shuryak and T. Sulejmanpasic, Holonomy potential and confinement from a simple model of the gauge topology, Phys. Lett. B 726, 257 (2013), arXiv:1305.0796 [hep-ph] .
- R. Larsen and E. Shuryak, Interacting ensemble of the instanton-dyons and the deconfinement phase transition in the SU(2) gauge theory, Phys. Rev. D 92, 094022 (2015), arXiv:1504.03341 [hep-ph] .
- M. A. Lopez-Ruiz, Y. Jiang, and J. Liao, Confinement from correlated instanton-dyon ensemble in SU(2) Yang-Mills theory, Phys. Rev. D 99, 114013 (2019), arXiv:1903.02684 [hep-ph] .
- D. DeMartini and E. Shuryak, Deconfinement phase transition in the SU(3)𝑆𝑈3SU(3)italic_S italic_U ( 3 ) instanton-dyon ensemble, Phys. Rev. D 104, 054010 (2021), arXiv:2102.11321 [hep-ph] .
- A. González-Arroyo and A. Montero, Self-dual vortex-like configurations in SU(2) Yang-Mills theory, Phys. Lett. B 442, 273 (1998), arXiv:hep-th/9809037 .
- A. Montero, Study of SU(3) vortex-like configurations with a new maximal center gauge fixing method, Phys. Lett. B 467, 106 (1999), arXiv:hep-lat/9906010 .
- A. Montero, Vortex configurations in the large N𝑁Nitalic_N limit, Phys. Lett. B 483, 309 (2000b), arXiv:hep-lat/0004002 .
- J. Dasilva Golán and M. García Pérez, SU(N𝑁Nitalic_N) fractional instantons and the Fibonacci sequence, J. High Energy Phys. 12, 109 (2022), arXiv:2208.07133 [hep-th] .
- V. P. Nair and R. D. Pisarski, Fractional topological charge in SU(N)𝑆𝑈𝑁SU(N)italic_S italic_U ( italic_N ) gauge theories without dynamical quarks, Phys. Rev. D 108, 074007 (2023), arXiv:2206.11284 [hep-th] .
- E. M. Ilgenfritz, B. V. Martemyanov, and M. Müller-Preussker, Topology near the transition temperature in lattice gluodynamics analyzed by low lying modes of the overlap Dirac operator, Phys. Rev. D 89, 054503 (2014), arXiv:1309.7850 [hep-lat] .
- V. G. Bornyakov, E. M. Ilgenfritz, and B. V. Martemyanov, Dyons near the transition temperature in SU(3)𝑆𝑈3SU(3)italic_S italic_U ( 3 ) lattice gluodynamics, J. Phys. G 45, 055006 (2018), arXiv:1711.04476 [hep-lat] .
- D. B. Leinweber, Visualizations of the QCD vacuum, in Proceedings of the Workshop on Lightcone QCD and Nonperturbative Hadron Physics (World Scientific Publishing, Singapore, 2001) pp. 138–143, arXiv:hep-lat/0004025 .
- B. Berg, Dislocations and topological background in the lattice O(3) σ𝜎\sigmaitalic_σ-model, Phys. Lett. B 104, 475 (1981).
- M. Teper, Instantons in the quantized SU(2) vacuum: A lattice Monte Carlo investigation, Phys. Lett. B 162, 357 (1985).
- S. O. Bilson-Thompson, D. B. Leinweber, and A. G. Williams, Highly improved lattice field-strength tensor, Ann. Phys. 304, 1 (2003), arXiv:hep-lat/0203008 .
- E. Witten, Some Exact Multipseudoparticle Solutions of Classical Yang-Mills Theory, Phys. Rev. Lett. 38, 121 (1977).
- M. García Pérez, T. G. Kovács, and P. van Baal, Instanton size distribution, Phys. Lett. B 472, 295 (2000a), arXiv:hep-ph/9911485 .
- M. García Pérez, T. G. Kovács, and P. van Baal, Overlapping instantons, in Proceedings of the 4th Workshop on Continuous Advances in QCD (World Scientific Publishing, Singapore, 2000) pp. 79–89, arXiv:hep-ph/0006155 .
- M. Albanese et al. (APE Collaboration), Glueball masses and string tension in lattice QCD, Phys. Lett. B 192, 163 (1987).
- C. Morningstar and M. J. Peardon, Analytic smearing of SU(3) link variables in lattice QCD, Phys. Rev. D 69, 054501 (2004), arXiv:hep-lat/0311018 .
- M. Lüscher, Trivializing Maps, the Wilson Flow and the HMC Algorithm, Commun. Math. Phys. 293, 899 (2010a), arXiv:0907.5491 [hep-lat] .
- M. Lüscher, Properties and uses of the Wilson flow in lattice QCD, J. High Energy Phys. 08, 071 (2010), [Erratum: J. High Energy Phys. 03, 092 (2014)], arXiv:1006.4518 [hep-lat] .
- P. J. Moran and D. B. Leinweber, Over-improved stout-link smearing, Phys. Rev. D 77, 094501 (2008), arXiv:0801.1165 [hep-lat] .
- C. Bonati and M. D’Elia, Comparison of the gradient flow with cooling in SU(3)𝑆𝑈3SU(3)italic_S italic_U ( 3 ) pure gauge theory, Phys. Rev. D 89, 105005 (2014), arXiv:1401.2441 [hep-lat] .
- S. D. Thomas, W. Kamleh, and D. B. Leinweber, Instanton contributions to the low-lying hadron mass spectrum, Phys. Rev. D 92, 094515 (2015), arXiv:1410.7105 [hep-lat] .
- M. Nagatsuka, K. Sakai, and S. Sasaki, Equivalence between the Wilson flow and stout-link smearing, Phys. Rev. D 108, 094506 (2023), arXiv:2303.09938 [hep-lat] .
- P. de Forcrand, M. Garcïa Përez, and I.-O. Stamatescu, Topology of the SU(2) vacuum: a lattice study using improved cooling, Nucl. Phys. B 499, 409 (1997), arXiv:hep-lat/9701012 .
- P. de Forcrand, M. Garcïa Përez, and I.-O. Stamatescu, Improved cooling algorithm for gauge theories, Nucl. Phys. B Proc. Suppl. 47, 777 (1996), arXiv:hep-lat/9509064 .
- F. Karsch, Lattice QCD at finite temperature and density, Nucl. Phys. B Proc. Suppl. 83, 14 (2000), arXiv:hep-lat/9909006 .
- W. Kamleh, D. B. Leinweber, and A. G. Williams, Hybrid Monte Carlo algorithm with fat link fermion actions, Phys. Rev. D 70, 014502 (2004), arXiv:hep-lat/0403019 .
- Y. Iwasaki, Renormalization Group Analysis of Lattice Theories and Improved Lattice Action. II. Four-dimensional non-Abelian SU(N) gauge model, (1983), arXiv:1111.7054 [hep-lat] .
- L. D. McLerran and B. Svetitsky, Quark liberation at high temperature: A Monte Carlo study of SU(2) gauge theory, Phys. Rev. D 24, 450 (1981).
- C. Gattringer and A. Schmidt, Center clusters in the Yang-Mills vacuum, J. High Energy Phys. 01, 051 (2011), arXiv:1011.2329 [hep-lat] .
- F. M. Stokes, W. Kamleh, and D. B. Leinweber, Visualizations of coherent center domains in local Polyakov loops, Ann. Phys. 348, 341 (2014), arXiv:1312.0991 [hep-lat] .
- F. Bruckmann and P. van Baal, Multi-caloron solutions, Nucl. Phys. B 645, 105 (2002), arXiv:hep-th/0209010 .
- F. Bruckmann, D. Nógrádi, and P. van Baal, Constituent monopoles through the eyes of fermion zero-modes, Nucl. Phys. B 666, 197 (2003), arXiv:hep-th/0305063 .
- F. Bruckmann, D. Nógrádi, and P. van Baal, Higher charge calorons with non-trivial holonomy, Nucl. Phys. B 698, 233 (2004), arXiv:hep-th/0404210 .
- D. Nogradi, Multi-calorons and their moduli, Ph.D. thesis (2005), arXiv:hep-th/0511125 .
- P. Gerhold, E. M. Ilgenfritz, and M. Müller-Preussker, An SU(2)𝑆𝑈2SU(2)italic_S italic_U ( 2 ) KvBLL caloron gas model and confinement, Nucl. Phys. B 760, 1 (2007a), arXiv:hep-ph/0607315 .
- P. Gerhold, E.-M. Ilgenfritz, and M. Müller-Preussker, Improved superposition schemes for approximate multi-caloron configurations, Nucl. Phys. B 774, 268 (2007b), arXiv:hep-ph/0610426 .
- M. F. Atiyah and I. M. Singer, The index of elliptic operators on compact manifolds, Bull. Am. Math. Soc. 69, 422 (1969).
- A. Trewartha, W. Kamleh, and D. Leinweber, Connection between center vortices and instantons through gauge-field smoothing, Phys. Rev. D 92, 074507 (2015), arXiv:1509.05518 [hep-lat] .
- I. Soler, G. Bergner, and A. González-Arroyo, Extracting Yang-Mills topological structures with adjoint modes, Proc. Sci. LATTICE2023, 378 (2024), arXiv:2312.06308 [hep-lat] .
- A. González-Arroyo and R. Kirchner, Adjoint modes as probes of gauge field structure, J. High Energy Phys. 01, 029 (2006), arXiv:hep-lat/0507036 .
- M. García Pérez, A. González-Arroyo, and A. Sastre, Ultraviolet filtering of lattice configurations and applications to Monte Carlo dynamics, J. High Energy Phys. 07, 034 (2011), arXiv:1103.5999 [hep-lat] .
- K. G. Wilson, Confinement of quarks, Phys. Rev. D 10, 2445 (1974).
- N. Cabibbo and E. Marinari, A new method for updating SU(N𝑁Nitalic_N) matrices in computer simulations of gauge theories, Phys. Lett. B 119, 387 (1982).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.