Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 67 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Sub-dimensional magnetic polarons in the one-hole doped SU(3) $t$-$J$ model (2312.14137v2)

Published 21 Dec 2023 in cond-mat.str-el, cond-mat.quant-gas, and quant-ph

Abstract: The physics of doped Mott insulators is at the heart of strongly correlated materials and is believed to constitute an essential ingredient for high-temperature superconductivity. In systems with higher SU(N) spin symmetries, even richer magnetic ground states appear at a filling of one particle per site compared to the case of SU(2) spins, but their fate upon doping remains largely unexplored. Here we address this question by studying a single hole in the SU(3) $t$-$J$ model, whose undoped ground state features long-range, diagonal spin stripes. By analyzing both ground state and dynamical properties utilizing the density matrix renormalization group, we establish the appearence of magnetic polarons consisting of chargons and flavor defects, whose dynamics is constrained to a single effective dimension along the ordered diagonal. We semi-analytically describe the system using geometric string theory, where paths of hole motion are the fundamental degrees of freedom. With recent advances in the realization and control of SU(N) Fermi-Hubbard models with ultracold atoms in optical lattices, our results can directly be observed in quantum gas microscopes with single-site resolution. Our work suggests the appearance of intricate ground states at finite doping constituted by emergent, coupled Luttinger liquids along diagonals, and is a first step towards exploring a wealth of physics in doped SU(N) Fermi-Hubbard models on various geometries.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. H.-C. Jiang and T. P. Devereaux, Science 365, 1424 (2019).
  2. H.-C. Jiang and S. A. Kivelson, Proceedings of the National Academy of Sciences 119 (2022).
  3. C. Gross and I. Bloch, Science 357, 995 (2017).
  4. I. Affleck and J. B. Marston, Phys. Rev. B 37, 3774 (1988).
  5. C. Honerkamp and W. Hofstetter, Phys. Rev. Lett. 92, 170403 (2004).
  6. F. F. Assaad, Phys. Rev. B 71, 075103 (2005).
  7. A. Sotnikov and W. Hofstetter, Phys. Rev. A 89, 063601 (2014).
  8. A. Sotnikov, Phys. Rev. A 92, 023633 (2015).
  9. H. Yanatori and A. Koga, Phys. Rev. B 94, 041110 (2016).
  10. M. Hafez-Torbati and W. Hofstetter, Phys. Rev. B 98, 245131 (2018).
  11. M. Hafez-Torbati and W. Hofstetter, Phys. Rev. B 100, 035133 (2019).
  12. E. V. Gorelik and N. Blümer, Phys. Rev. A 80, 051602 (2009).
  13. C. Feng, E. Ibarra-García-Padilla, K. R. A. Hazzard, R. Scalettar, S. Zhang,  and E. Vitali, “Metal-insulator transition and quantum magnetism in the SU(3) Fermi-Hubbard Model: Disentangling Nesting and the Mott Transition,”  (2023), arXiv:2306.16464 .
  14. E. Ibarra-García-Padilla, C. Feng, G. Pasqualetti, S. Fölling, R. T. Scalettar, E. Khatami,  and K. R. A. Hazzard, “Metal-insulator transition and magnetism of SU(3) fermions in the square lattice,”  (2023), arXiv:2306.10644 .
  15. M. A. Cazalilla and A. M. Rey, Reports on Progress in Physics 77, 124401 (2014).
  16. S. Stellmer, F. Schreck,  and T. C. Killian, “Degenerate quantum gases of strontium,” in Annual Review of Cold Atoms and Molecules, Chap. Chapter 1, pp. 1–80.
  17. G. Pasqualetti, O. Bettermann, N. D. Oppong, E. Ibarra-García-Padilla, S. Dasgupta, R. T. Scalettar, K. R. A. Hazzard, I. Bloch,  and S. Fölling, “Equation of State and Thermometry of the 2D SU(N𝑁Nitalic_N) Fermi-Hubbard Model,”  (2023), arXiv:2305.18967 .
  18. P. Nataf and F. Mila, Phys. Rev. Lett. 113, 127204 (2014).
  19. C. Romen and A. M. Läuchli, Phys. Rev. Res. 2, 043009 (2020).
  20. A. Auerbach, Interacting electrons and quantum magnetism (Springer Science & Business Media, 1998).
  21. See Supplementary Materials for details.
  22. U. Schollwöck, Annals of Physics 326, 96 (2011), january 2011 Special Issue.
  23. U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
  24. S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
  25. C. Hubig, F. Lachenmaier, N.-O. Linden, T. Reinhard, L. Stenzel, A. Swoboda, M. Grundner,  and S. Mardazad, “The SyTen toolkit,” .
  26. C. Hubig, “Symmetry-protected tensor networks,”  (2017).
  27. M. Ogata and H. Shiba, Phys. Rev. B 41, 2326 (1990).
  28. S. A. Trugman, Phys. Rev. B 37, 1597 (1988).
  29. M. Yang and S. R. White, Phys. Rev. B 102, 094315 (2020).
  30. J. Voit, Reports on Progress in Physics 58, 977 (1995).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 10 likes.