Papers
Topics
Authors
Recent
2000 character limit reached

Non-Canonical Nucleon Decays as Window into Light New Physics

Published 21 Dec 2023 in hep-ph and hep-ex | (2312.13740v2)

Abstract: Nucleon decays are generic predictions of motivated theories, including those based on the unification of forces and supersymmetry. We demonstrate that non-canonical nucleon decays offer a unique opportunity to broadly probe light new particles beyond the Standard Model with masses below $\sim$few GeV over decades in mass range, including axion-like particles, dark photons, sterile neutrinos, and scalar dark matter. Conventional searches can misinterpret and even completely miss such new physics. We propose a general strategy based on momenta of visible decay final states to probe these processes, offering a rich physics program for existing and upcoming experiments such as Super-Kamiokande, Hyper-Kamiokande, DUNE, and JUNO.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (79)
  1. G. ’t Hooft, “Symmetry Breaking Through Bell-Jackiw Anomalies,” Phys. Rev. Lett. 37 (1976) 8–11.
  2. T. Banks and N. Seiberg, “Symmetries and Strings in Field Theory and Gravity,” Phys. Rev. D 83 (2011) 084019, arXiv:1011.5120 [hep-th].
  3. D. Harlow and H. Ooguri, “Constraints on Symmetries from Holography,” Phys. Rev. Lett. 122 no. 19, (2019) 191601, arXiv:1810.05337 [hep-th].
  4. A. D. Sakharov, “Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe,” Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32–35.
  5. H. Georgi and S. L. Glashow, “Unity of All Elementary Particle Forces,” Phys. Rev. Lett. 32 (1974) 438–441.
  6. H. Fritzsch and P. Minkowski, “Unified Interactions of Leptons and Hadrons,” Annals Phys. 93 (1975) 193–266.
  7. P. Langacker, “Grand Unified Theories and Proton Decay,” Phys. Rept. 72 (1981) 185.
  8. P. Nath and P. Fileviez Perez, “Proton stability in grand unified theories, in strings and in branes,” Phys. Rept. 441 (2007) 191–317, arXiv:hep-ph/0601023.
  9. Particle Data Group Collaboration, R. L. Workman and Others, “Review of Particle Physics,” PTEP 2022 (2022) 083C01.
  10. J. Heeck and V. Takhistov, “Inclusive Nucleon Decay Searches as a Frontier of Baryon Number Violation,” Phys. Rev. D 101 no. 1, (2020) 015005, arXiv:1910.07647 [hep-ph].
  11. P. S. B. Dev et al., “Searches for Baryon Number Violation in Neutrino Experiments: A White Paper,” arXiv:2203.08771 [hep-ex].
  12. Super-Kamiokande Collaboration, Y. Fukuda et al., “The Super-Kamiokande detector,” Nucl. Instrum. Meth. A 501 (2003) 418–462.
  13. Super-Kamiokande Collaboration, V. Takhistov, “Review of Nucleon Decay Searches at Super-Kamiokande,” in 51st Rencontres de Moriond on EW Interactions and Unified Theories, pp. 437–444. 2016. arXiv:1605.03235 [hep-ex].
  14. Super-Kamiokande Collaboration, A. Takenaka et al., “Search for proton decay via p→e+⁢π0→𝑝superscript𝑒superscript𝜋0p\to e^{+}\pi^{0}italic_p → italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_π start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT and p→μ+⁢π0→𝑝superscript𝜇superscript𝜋0p\to\mu^{+}\pi^{0}italic_p → italic_μ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_π start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT with an enlarged fiducial volume in Super-Kamiokande I-IV,” Phys. Rev. D 102 no. 11, (2020) 112011, arXiv:2010.16098 [hep-ex].
  15. Hyper-Kamiokande Collaboration, K. Abe et al., “Hyper-Kamiokande Design Report,” arXiv:1805.04163 [physics.ins-det].
  16. DUNE Collaboration, B. Abi et al., “Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume I Introduction to DUNE,” JINST 15 no. 08, (2020) T08008, arXiv:2002.02967 [physics.ins-det].
  17. JUNO Collaboration, Z. Djurcic et al., “JUNO Conceptual Design Report,” arXiv:1508.07166 [physics.ins-det].
  18. H. Davoudiasl, D. E. Morrissey, K. Sigurdson, and S. Tulin, “Hylogenesis: A Unified Origin for Baryonic Visible Matter and Antibaryonic Dark Matter,” Phys. Rev. Lett. 105 (2010) 211304, arXiv:1008.2399 [hep-ph].
  19. J. Berger and G. Elor, “Dark Matter Induced Nucleon Decay Signals in Mesogenesis,” arXiv:2301.04165 [hep-ph].
  20. J. C. Helo, M. Hirsch, and T. Ota, “Proton decay and light sterile neutrinos,” JHEP 06 (2018) 047, arXiv:1803.00035 [hep-ph].
  21. D. Barducci, M. Fabbrichesi, and E. Gabrielli, “Neutral Hadrons Disappearing into the Darkness,” Phys. Rev. D 98 no. 3, (2018) 035049, arXiv:1806.05678 [hep-ph].
  22. B. Fornal and B. Grinstein, “Dark Matter Interpretation of the Neutron Decay Anomaly,” Phys. Rev. Lett. 120 no. 19, (2018) 191801, arXiv:1801.01124 [hep-ph]. [Erratum: Phys.Rev.Lett. 124, 219901 (2020)].
  23. D. McKeen, A. E. Nelson, S. Reddy, and D. Zhou, “Neutron stars exclude light dark baryons,” Phys. Rev. Lett. 121 no. 6, (2018) 061802, arXiv:1802.08244 [hep-ph].
  24. X.-G. He and S. Pakvasa, “Unparticle Induced Baryon Number Violating Nucleon Decays,” Phys. Lett. B 662 (2008) 259–263, arXiv:0801.0189 [hep-ph].
  25. S. Weinberg, “Baryon and Lepton Nonconserving Processes,” Phys. Rev. Lett. 43 (1979) 1566–1570.
  26. F. Wilczek and A. Zee, “Operator Analysis of Nucleon Decay,” Phys. Rev. Lett. 43 (1979) 1571–1573.
  27. L. F. Abbott and M. B. Wise, “The Effective Hamiltonian for Nucleon Decay,” Phys. Rev. D 22 (1980) 2208.
  28. S. Weinberg, “Varieties of Baryon and Lepton Nonconservation,” Phys. Rev. D 22 (1980) 1694.
  29. H. A. Weldon and A. Zee, “Operator Analysis of New Physics,” Nucl. Phys. B 173 (1980) 269–290.
  30. J. C. Pati, A. Salam, and U. Sarkar, “Delta B = - Delta L, neutron —>>> e- pi+, e- K+, mu- pi+ and mu- K+ DECAY modes in SU(2)-L X SU(2)-R X SU(4)-C or SO(10),” Phys. Lett. B 133 (1983) 330–336.
  31. K. S. Babu and R. N. Mohapatra, “B-L Violating Nucleon Decay and GUT Scale Baryogenesis in SO(10),” Phys. Rev. D 86 (2012) 035018, arXiv:1203.5544 [hep-ph].
  32. C. Hati and U. Sarkar, “B−L𝐵𝐿B-Litalic_B - italic_L violating nucleon decays as a probe of leptoquarks and implications for baryogenesis,” Nucl. Phys. B 954 (2020) 114985, arXiv:1805.06081 [hep-ph].
  33. P. J. O’Donnell and U. Sarkar, “Three lepton decay mode of the proton,” Phys. Lett. B 316 (1993) 121–126, arXiv:hep-ph/9307254.
  34. T. Hambye and J. Heeck, “Proton decay into charged leptons,” Phys. Rev. Lett. 120 no. 17, (2018) 171801, arXiv:1712.04871 [hep-ph].
  35. R. M. Fonseca, M. Hirsch, and R. Srivastava, “Δ⁢L=3Δ𝐿3\Delta L=3roman_Δ italic_L = 3 processes: Proton decay and the LHC,” Phys. Rev. D 97 no. 7, (2018) 075026, arXiv:1802.04814 [hep-ph].
  36. Y. Chikashige, R. N. Mohapatra, and R. D. Peccei, “Are There Real Goldstone Bosons Associated with Broken Lepton Number?,” Phys. Lett. B 98 (1981) 265–268.
  37. G. B. Gelmini and M. Roncadelli, “Left-Handed Neutrino Mass Scale and Spontaneously Broken Lepton Number,” Phys. Lett. B 99 (1981) 411–415.
  38. C. B. Adams et al., “Axion Dark Matter,” in Snowmass 2021. 3, 2022. arXiv:2203.14923 [hep-ex].
  39. A. Boyarsky, M. Drewes, T. Lasserre, S. Mertens, and O. Ruchayskiy, “Sterile neutrino Dark Matter,” Prog. Part. Nucl. Phys. 104 (2019) 1–45, arXiv:1807.07938 [hep-ph].
  40. N. Arkani-Hamed and Y. Grossman, “Light active and sterile neutrinos from compositeness,” Phys. Lett. B 459 (1999) 179–182, arXiv:hep-ph/9806223.
  41. K. Agashe, S. Hong, and L. Vecchi, “Warped seesaw mechanism is physically inverted,” Phys. Rev. D 94 no. 1, (2016) 013001, arXiv:1512.06742 [hep-ph].
  42. Z. Chacko, P. J. Fox, R. Harnik, and Z. Liu, “Neutrino Masses from Low Scale Partial Compositeness,” JHEP 03 (2021) 112, arXiv:2012.01443 [hep-ph].
  43. S. Chakraborty, T. H. Jung, and T. Okui, “Composite neutrinos and the QCD axion: Baryogenesis, dark matter, small Dirac neutrino masses, and vanishing neutron electric dipole moment,” Phys. Rev. D 105 no. 1, (2022) 015024, arXiv:2108.04293 [hep-ph].
  44. M. Fabbrichesi, E. Gabrielli, and G. Lanfranchi, “The Dark Photon,” arXiv:2005.01515 [hep-ph].
  45. At higher dimensions nucleon decays can occur at loop level as well, allowing for the scenarios to be realized with new physics.
  46. SNO+ Collaboration, M. Anderson et al., “Search for invisible modes of nucleon decay in water with the SNO+ detector,” Phys. Rev. D 99 no. 3, (2019) 032008, arXiv:1812.05552 [hep-ex].
  47. KamLAND Collaboration, T. Araki et al., “Search for the invisible decay of neutrons with KamLAND,” Phys. Rev. Lett. 96 (2006) 101802, arXiv:hep-ex/0512059.
  48. G. R. Dvali, G. Gabadadze, and G. Senjanovic, “Constraints on extra time dimensions,” arXiv:hep-ph/9910207.
  49. R. N. Mohapatra and A. Perez-Lorenzana, “Neutrino mass, proton decay and dark matter in TeV scale universal extra dimension models,” Phys. Rev. D 67 (2003) 075015, arXiv:hep-ph/0212254.
  50. J. C. Pati and A. Salam, “Is Baryon Number Conserved?,” Phys. Rev. Lett. 31 (1973) 661–664.
  51. Super-Kamiokande Collaboration, V. Takhistov et al., “Search for Nucleon and Dinucleon Decays with an Invisible Particle and a Charged Lepton in the Final State at the Super-Kamiokande Experiment,” Phys. Rev. Lett. 115 no. 12, (2015) 121803, arXiv:1508.05530 [hep-ex].
  52. Super-Kamiokande Collaboration, S. Sussman et al., “Dinucleon and Nucleon Decay to Two-Body Final States with no Hadrons in Super-Kamiokande,” arXiv:1811.12430 [hep-ex].
  53. Majorana Collaboration, S. I. Alvis et al., “Search for trinucleon decay in the Majorana Demonstrator,” Phys. Rev. D 99 no. 7, (2019) 072004, arXiv:1812.01090 [hep-ex].
  54. D. Silverman and A. Soni, “The Decay Proton →e+⁢γ→absentsuperscript𝑒𝛾\to e^{+}\gamma→ italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_γ in Grand Unified Gauge Theories,” Phys. Lett. B 100 (1981) 131–134.
  55. Y. Aoki, T. Izubuchi, E. Shintani, and A. Soni, “Improved lattice computation of proton decay matrix elements,” Phys. Rev. D 96 no. 1, (2017) 014506, arXiv:1705.01338 [hep-lat].
  56. Y. Aoki, E. Shintani, and A. Soni, “Proton decay matrix elements on the lattice,” Phys. Rev. D 89 no. 1, (2014) 014505, arXiv:1304.7424 [hep-lat].
  57. R. N. Mohapatra and J. C. Pati, “A Natural Left-Right Symmetry,” Phys. Rev. D 11 (1975) 2558.
  58. G. Senjanovic and R. N. Mohapatra, “Exact Left-Right Symmetry and Spontaneous Violation of Parity,” Phys. Rev. D 12 (1975) 1502.
  59. R. N. Mohapatra and G. Senjanovic, “Neutrino Mass and Spontaneous Parity Nonconservation,” Phys. Rev. Lett. 44 (1980) 912.
  60. R. N. Mohapatra and G. Senjanovic, “Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation,” Phys. Rev. D 23 (1981) 165.
  61. J. C. Pati and A. Salam, “Lepton Number as the Fourth Color,” Phys. Rev. D 10 (1974) 275–289. [Erratum: Phys.Rev.D 11, 703–703 (1975)].
  62. H. S. Goh, R. N. Mohapatra, S. Nasri, and S.-P. Ng, “Proton decay in a minimal SUSY SO(10) model for neutrino mixings,” Phys. Lett. B 587 (2004) 105–116, arXiv:hep-ph/0311330.
  63. K. S. Babu, B. Bajc, and S. Saad, “Resurrecting Minimal Yukawa Sector of SUSY SO(10),” JHEP 10 (2018) 135, arXiv:1805.10631 [hep-ph].
  64. D. Chang, R. N. Mohapatra, and M. K. Parida, “Decoupling Parity and SU(2)-R Breaking Scales: A New Approach to Left-Right Symmetric Models,” Phys. Rev. Lett. 52 (1984) 1072.
  65. D. Chang, R. N. Mohapatra, and M. K. Parida, “A New Approach to Left-Right Symmetry Breaking in Unified Gauge Theories,” Phys. Rev. D 30 (1984) 1052.
  66. F. F. Deppisch, T. E. Gonzalo, S. Patra, N. Sahu, and U. Sarkar, “Signal of Right-Handed Charged Gauge Bosons at the LHC?,” Phys. Rev. D 90 no. 5, (2014) 053014, arXiv:1407.5384 [hep-ph].
  67. F. F. Deppisch, T. E. Gonzalo, S. Patra, N. Sahu, and U. Sarkar, “Double beta decay, lepton flavor violation, and collider signatures of left-right symmetric models with spontaneous D𝐷Ditalic_D-parity breaking,” Phys. Rev. D 91 no. 1, (2015) 015018, arXiv:1410.6427 [hep-ph].
  68. Some of the other possibilities could include implementation of special symmetries in supersymmetric version of Pati-Salam model King:1997wf or use of extended seesaw mechanisms Dolan:2020doe .
  69. U. Sarkar, “Parity in left-right symmetric models,” Phys. Lett. B 594 (2004) 308–314, arXiv:hep-ph/0403276.
  70. J.-O. Gong and N. Sahu, “Inflation in minimal left-right symmetric model with spontaneous D-parity breaking,” Phys. Rev. D 77 (2008) 023517, arXiv:0705.0068 [hep-ph].
  71. Super-Kamiokande Collaboration, K. Abe et al., “Search for Nucleon Decay via n→ν¯⁢π0→𝑛¯𝜈superscript𝜋0n\to\bar{\nu}\pi^{0}italic_n → over¯ start_ARG italic_ν end_ARG italic_π start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT and p→ν¯⁢π+→𝑝¯𝜈superscript𝜋p\to\bar{\nu}\pi^{+}italic_p → over¯ start_ARG italic_ν end_ARG italic_π start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT in Super-Kamiokande,” Phys. Rev. Lett. 113 no. 12, (2014) 121802, arXiv:1305.4391 [hep-ex].
  72. Super-Kamiokande Collaboration, V. Takhistov et al., “Search for Trilepton Nucleon Decay via p→e+⁢ν⁢ν→𝑝superscript𝑒𝜈𝜈p\rightarrow e^{+}\nu\nuitalic_p → italic_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_ν italic_ν and p→μ+⁢ν⁢ν→𝑝superscript𝜇𝜈𝜈p\rightarrow\mu^{+}\nu\nuitalic_p → italic_μ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_ν italic_ν in the Super-Kamiokande Experiment,” Phys. Rev. Lett. 113 no. 10, (2014) 101801, arXiv:1409.1947 [hep-ex].
  73. M.-C. Chen and V. Takhistov, “Charged Lepton Spectrum Approximation in a Three Body Nucleon Decay,” Phys. Rev. D 89 no. 9, (2014) 095003, arXiv:1402.7360 [hep-ph].
  74. K. Nakamura, S. Hiramatsu, T. Kamae, H. Muramatsu, N. Izutsu, and Y. Watase, “The Reaction C-12 (e, e’ p) at 700-MeV and DWIA Analysis,” Nucl. Phys. A 268 (1976) 381–407.
  75. Super-Kamiokande Collaboration, K. Abe et al., “Search for nucleon decay into charged antilepton plus meson in 0.316 megaton⋅⋅\cdot⋅years exposure of the Super-Kamiokande water Cherenkov detector,” Phys. Rev. D 96 no. 1, (2017) 012003, arXiv:1705.07221 [hep-ex].
  76. T. Yamazaki and Y. Akaishi, “Nuclear medium effects on invariant mass spectra of hadrons decaying in nuclei,” Phys. Lett. B 453 (2000) 1–6.
  77. RBC-UKQCD Collaboration, Y. Aoki, P. Boyle, P. Cooney, L. Del Debbio, R. Kenway, C. M. Maynard, A. Soni, and R. Tweedie, “Proton lifetime bounds from chirally symmetric lattice QCD,” Phys. Rev. D 78 (2008) 054505, arXiv:0806.1031 [hep-lat].
  78. S. F. King and G. K. Leontaris, “Leptoquarks in SUSY unified models and the HERA events,” Phys. Lett. B 406 (1997) 309–313, arXiv:hep-ph/9704336.
  79. M. J. Dolan, T. P. Dutka, and R. R. Volkas, “Lowering the scale of Pati-Salam breaking through seesaw mixing,” JHEP 05 (2021) 199, arXiv:2012.05976 [hep-ph].
Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.