Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 178 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Domain Adaptive Graph Classification (2312.13536v1)

Published 21 Dec 2023 in cs.LG and cs.AI

Abstract: Despite the remarkable accomplishments of graph neural networks (GNNs), they typically rely on task-specific labels, posing potential challenges in terms of their acquisition. Existing work have been made to address this issue through the lens of unsupervised domain adaptation, wherein labeled source graphs are utilized to enhance the learning process for target data. However, the simultaneous exploration of graph topology and reduction of domain disparities remains a substantial hurdle. In this paper, we introduce the Dual Adversarial Graph Representation Learning (DAGRL), which explore the graph topology from dual branches and mitigate domain discrepancies via dual adversarial learning. Our method encompasses a dual-pronged structure, consisting of a graph convolutional network branch and a graph kernel branch, which enables us to capture graph semantics from both implicit and explicit perspectives. Moreover, our approach incorporates adaptive perturbations into the dual branches, which align the source and target distribution to address domain discrepancies. Extensive experiments on a wild range graph classification datasets demonstrate the effectiveness of our proposed method.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. H. Chen, H. Yin, X. Sun, T. Chen, B. Gabrys, and K. Musial, “Multi-level graph convolutional networks for cross-platform anchor link prediction,” in KDD, 2020, pp. 1503–1511.
  2. F. Gao, G. Wolf, and M. Hirn, “Geometric scattering for graph data analysis,” in ICML, 2019, pp. 2122–2131.
  3. N. Yin, L. Shen, H. Xiong, B. Gu, C. Chen, X.-S. Hua, S. Liu, and X. Luo, “Messages are never propagated alone: Collaborative hypergraph neural network for time-series forecasting,” IEEE Transactions on Pattern Analysis & Machine Intelligence, no. 01, pp. 1–15, 2023.
  4. N. Yin, F. Feng, Z. Luo, X. Zhang, W. Wang, X. Luo, C. Chen, and X.-S. Hua, “Dynamic hypergraph convolutional network,” in 2022 IEEE 38th International Conference on Data Engineering (ICDE).   IEEE, 2022, pp. 1621–1634.
  5. N. Yin, L. Shen, M. Wang, X. Luo, Z. Luo, and D. Tao, “Omg: Towards effective graph classification against label noise,” TKDE, 2023.
  6. N. Yin and Z. Luo, “Generic structure extraction with bi-level optimization for graph structure learning,” Entropy, vol. 24, no. 9, p. 1228, 2022.
  7. N. Yin, L. Shen, B. Li, M. Wang, X. Luo, C. Chen, Z. Luo, and X.-S. Hua, “Deal: An unsupervised domain adaptive framework for graph-level classification,” in ACMMM, 2022, pp. 3470–3479.
  8. N. Yin, L. Shen, M. Wang, L. Lan, Z. Ma, C. Chen, X.-S. Hua, and X. Luo, “Coco: A coupled contrastive framework for unsupervised domain adaptive graph classification,” in ICML, 2023.
  9. J. Pang, Z. Wang, J. Tang, M. Xiao, and N. Yin, “Sa-gda: Spectral augmentation for graph domain adaptation,” in ACMMM, 2023.
  10. J. Kazius, R. McGuire, and R. Bursi, “Derivation and validation of toxicophores for mutagenicity prediction,” Journal of medicinal chemistry, vol. 48, no. 1, pp. 312–320, 2005.
  11. C. Morris, N. M. Kriege, F. Bause, K. Kersting, P. Mutzel, and M. Neumann, “Tudataset: A collection of benchmark datasets for learning with graphs,” in ICMLW, 2020.
  12. N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen, K. Mehlhorn, and K. M. Borgwardt, “Weisfeiler-lehman graph kernels,” Journal of Machine Learning Research, vol. 12, no. 9, pp. 2539–2561, 2011.
  13. T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” in ICLR, 2017.
  14. K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural networks?” in ICLR, 2019.
  15. C. Bodnar, F. Frasca, N. Otter, Y. G. Wang, P. Liò, G. F. Montufar, and M. Bronstein, “Weisfeiler and lehman go cellular: Cw networks,” in NeurIPS, 2021, pp. 2625–2640.
  16. J. Baek, M. Kang, and S. J. Hwang, “Accurate learning of graph representations with graph multiset pooling,” in ICLR, 2021.
  17. M. Long, Z. Cao, J. Wang, and M. I. Jordan, “Conditional adversarial domain adaptation,” 2018, pp. 1647–1657.
  18. G. Wei, C. Lan, W. Zeng, Z. Zhang, and Z. Chen, “Toalign: Task-oriented alignment for unsupervised domain adaptation,” in NeurIPS, 2021, pp. 13 834–13 846.
  19. G. Wei, C. Lan, W. Zeng, and Z. Chen, “Metaalign: Coordinating domain alignment and classification for unsupervised domain adaptation,” in CVPR, 2021, pp. 16 643–16 653.
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.