Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 131 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

State Expansion of a Levitated Nanoparticle in a Dark Harmonic Potential (2312.13111v1)

Published 20 Dec 2023 in quant-ph

Abstract: Levitated nanoparticles in vacuum are prime candidates for generating macroscopic quantum superposition states of massive objects. Most protocols for preparing these states necessitate coherent expansion beyond the scale of the zero-point motion to produce sufficiently delocalized and pure phase-space distributions. Here, we spatially expand and subsequently recontract the thermal state of a levitated nanoparticle by modifying the stiffness of the trap holding the particle. We achieve state-expansion factors of 25 in standard deviation for a particle initially feedback-cooled to a center-of-mass thermal state of \SI{155}{\milli\kelvin}. Our method relies on a hybrid scheme combining an optical trap, for cooling and measuring the particle's motion, with a Paul trap for expanding its state. Consequently, state expansion occurs devoid of measurement backaction from photon recoil, making this approach suitable for coherent wavefunction expansion in future experiments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. M. Arndt and K. Hornberger, Testing the limits of quantum mechanical superpositions, Nature Physics 10, 271 (2014).
  2. O. Romero-Isart, Quantum superposition of massive objects and collapse models, Physical Review A 84, 052121 (2011).
  3. M. Kamba, R. Shimizu, and K. Aikawa, Optical cold damping of neutral nanoparticles near the ground state in an optical lattice, Optics Express 30, 26716 (2022).
  4. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Reviews of Modern Physics 86, 1391 (2014).
  5. P. Maurer, C. Gonzalez-Ballestero, and O. Romero-Isart, Quantum theory of light interaction with a lorenz-mie particle: Optical detection and three-dimensional ground-state cooling, Phys. Rev. A 108, 033714 (2023).
  6. P. Nagornykh, J. E. Coppock, and B. E. Kane, Cooling of levitated graphene nanoplatelets in high vacuum, Applied Physics Letters 106, 244102 (2015).
  7. G. P. Conangla, R. A. Rica, and R. Quidant, Extending Vacuum Trapping to Absorbing Objects with Hybrid Paul-Optical Traps, Nano Letters 20, 6018 (2020).
  8. J. Janszky and Y. Yushin, Squeezing via frequency jump, Optics Communications 59, 151 (1986).
  9. R. Graham, Squeezing and Frequency Changes in Harmonic Oscillations, Journal of Modern Optics 34, 873 (1987).
  10. C. F. Lo, Squeezing by tuning the oscillator frequency, Journal of Physics A: Mathematical and General 23, 1155 (1990).
  11. F. Cosco, J. S. Pedernales, and M. B. Plenio, Enhanced force sensitivity and entanglement in periodically driven optomechanics, Physical Review A 103, L061501 (2021).
  12. J.-S. Chen, Ticking near the Zero-Point Energy: Towards 1e-18 Accuracy in Al+{}^{+}start_FLOATSUPERSCRIPT + end_FLOATSUPERSCRIPT Optical Clocks, Ph.D. thesis, University of Colorado (2017).
  13. E. Bonvin, Hybrid Traps for Coherent State Expansion of a Levitated Nanoparticle, Doctoral thesis, ETH Zurich, Zurich (2023).
  14. E. Bonvin and et al., Supplemental Material  (2023).
  15. B. Efron, Bootstrap Methods: Another Look at the Jackknife, The Annals of Statistics 7, 10.1214/aos/1176344552 (1979).
  16. O. Romero-Isart, Coherent inflation for large quantum superpositions of levitated microspheres, New Journal of Physics 19, 123029 (2017).
  17. E. Joos and A. Lindner, Langevin equation for the parametric oscillator: A model for ion confinement in a radio frequency trap, Zeitschrift für Physik D Atoms, Molecules and Clusters 11, 295 (1989).
  18. N. W. McLachlan, Theory and Application of Mathieu Functions (Dover Publications, New York, 1964).
  19. J. Meixner and F. W. Schäfke, Mathieusche Funktionen und Sphäroidfunktionen (Springer Berlin Heidelberg, 1954).
Citations (11)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube