Papers
Topics
Authors
Recent
2000 character limit reached

Quadrature squeezing enhances Wigner negativity in a mechanical Duffing oscillator

Published 20 Dec 2023 in quant-ph | (2312.12986v1)

Abstract: Generating macroscopic non-classical quantum states is a long-standing challenge in physics. Anharmonic dynamics is an essential ingredient to generate these states, but for large mechanical systems, the effect of the anharmonicity tends to become negligible compared to decoherence. As a possible solution to this challenge, we propose to use a motional squeezed state as a resource to effectively enhance the anharmonicity. We analyze the production of negativity in the Wigner distribution of a quantum anharmonic resonator initially in a squeezed state. We find that initial squeezing enhances the rate at which negativity is generated. We also analyze the effect of two common sources of decoherence, namely energy damping and dephasing, and find that the detrimental effects of energy damping are suppressed by strong squeezing. In the limit of large squeezing, which is needed for state-of-the-art systems, we find good approximations for the Wigner function. Our analysis is significant for current experiments attempting to prepare macroscopic mechanical systems in genuine quantum states. We provide an overview of several experimental platforms featuring nonlinear behaviors and low levels of decoherence. In particular, we discuss the feasibility of our proposal with carbon nanotubes and levitated nanoparticles.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (12)
  1. A. Kenfack and K. yczkowski, J. Opt. B: Quantum Semiclass. Opt. 6, 396 (2004).
  2. W. H. Zurek, Nature 412, 712 (2001).
  3. M. A. Schlosshauer, Decoherence and the Quantum-to-Classical Transition, The Frontiers Collection (Springer, Berlin ; London, 2007).
  4. C. K. Hong and L. Mandel, Phys. Rev. Lett. 56, 58 (1986).
  5. D. F. Walls and G. J. Milburn, Quantum Optics, 2nd ed. (Springer, 2008).
  6. R. Hudson, Reports on Mathematical Physics 6, 249 (1974).
  7. V. Giovannetti and D. Vitali, Phys. Rev. A 63, 023812 (2001).
  8. A. Riera-Campeny, M. Roda-Llordes, P. T. Grochowski,  and O. Romero-Isart, “Wigner Analysis of Particle Dynamics in Wide Nonharmonic Potentials,”  (2023), arxiv:2307.14106 [quant-ph] .
  9. J. S. Aldridge and A. N. Cleland, Phys. Rev. Lett. 94, 156403 (2005).
  10. O. Romero-Isart, New J. Phys. 19, 123029 (2017).
  11. L. Neumeier, M. A. Ciampini, O. Romero-Isart, M. Aspelmeyer,  and N. Kiesel, “Fast Quantum Interference of a Nanoparticle via Optical Potential Control,”  (2022), arxiv:2207.12539 [cond-mat, physics:quant-ph] .
  12. O. Romero-Isart, Phys. Rev. A 84, 052121 (2011).
Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.