Frieze patterns and Farey complexes (2312.12953v3)
Abstract: Frieze patterns have attracted significant attention recently, motivated by their relationship with cluster algebras. A longstanding open problem has been to provide a combinatorial model for frieze patterns over the ring of integers modulo $n$ akin to Conway and Coxeter's celebrated model for positive integer frieze patterns. Here we solve this problem using the Farey complex of the ring of integers modulo $n$; in fact, using more general Farey complexes we provide combinatorial models for frieze patterns over any rings whatsoever. Our strategy generalises that of the first author and of Morier-Genoud et al. for integers and that of Felikson et al. for Eisenstein integers. We also generalise results of Singerman and Strudwick on diameters of Farey graphs, we recover a theorem of Morier-Genoud on enumerating friezes over finite fields, and we classify those frieze patterns modulo $n$ that lift to frieze patterns over the integers in terms of the topology of the corresponding Farey complexes.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.