Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The entanglement membrane in exactly solvable lattice models (2312.12509v3)

Published 19 Dec 2023 in quant-ph, cond-mat.stat-mech, hep-th, and nlin.CD

Abstract: Entanglement membrane theory is an effective coarse-grained description of entanglement dynamics and operator growth in chaotic quantum many-body systems. The fundamental quantity characterizing the membrane is the entanglement line tension. However, determining the entanglement line tension for microscopic models is in general exponentially difficult. We compute the entanglement line tension in a recently introduced class of exactly solvable yet chaotic unitary circuits, so-called generalized dual-unitary circuits, obtaining a non-trivial form that gives rise to a hierarchy of velocity scales with $v_E<v_B$. For the lowest level of the hierarchy, $\bar{\mathcal{L}}{2}$ circuits, the entanglement line tension can be computed entirely, while for the higher levels the solvability is reduced to certain regions in spacetime. This partial solvability enables us to place bounds on the entanglement velocity. We find that $\bar{\mathcal{L}}{2}$ circuits saturate certain bounds on entanglement growth that are also saturated in holographic models. Furthermore, we relate the entanglement line tension to temporal entanglement and correlation functions. We also develop new methods of constructing generalized dual-unitary gates, including constructions based on complex Hadamard matrices that exhibit additional solvability properties and constructions that display behavior unique to local dimension greater than or equal to three. Our results shed light on entanglement membrane theory in microscopic Floquet lattice models and enable us to perform non-trivial checks on the validity of its predictions by comparison to exact and numerical calculations. Moreover, they demonstrate that generalized dual-unitary circuits display a more generic form of information dynamics than dual-unitary circuits.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. P. W. Anderson, Basic notions of condensed matter physics (Benjamin/Cummings Pub. Co., Advanced Book Program, 1984).
  2. A. Nahum, S. Vijay, and J. Haah, Operator spreading in random unitary circuits, Phys. Rev. X 8, 021014 (2018).
  3. C. Jonay, D. A. Huse, and A. Nahum, Coarse-grained dynamics of operator and state entanglement, arXiv:1803.00089  (2018).
  4. Y. Li and M. P. A. Fisher, Statistical mechanics of quantum error correcting codes, Phys. Rev. B 103, 104306 (2021).
  5. Y. Li, S. Vijay, and M. P. Fisher, Entanglement domain walls in monitored quantum circuits and the directed polymer in a random environment, PRX Quantum 4, 010331 (2023).
  6. I. Lovas, U. Agrawal, and S. Vijay, Quantum coding transitions in the presence of boundary dissipation, arXiv:2304.02664  (2023).
  7. T. Zhou and A. Nahum, Entanglement membrane in chaotic many-body systems, Phys. Rev. X 10, 031066 (2020).
  8. M. Mezei, Membrane theory of entanglement dynamics from holography, Phys. Rev. D 98, 106025 (2018).
  9. M. Mezei and J. Virrueta, Exploring the membrane theory of entanglement dynamics, J. High Energy Phys. 2020 (2).
  10. I. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, Rev. Mod. Phys. 86, 153 (2014).
  11. J. Preskill, Quantum computing in the NISQ era and beyond, Quantum 2, 79 (2018).
  12. B. Bertini, P. Kos, and T. Prosen, Exact spectral form factor in a minimal model of many-body quantum chaos, Phys. Rev. Lett. 121, 264101 (2018).
  13. B. Bertini, P. Kos, and T. Prosen, Exact correlation functions for dual-unitary lattice models in 1+1111+11 + 1 dimensions, Phys. Rev. Lett. 123, 210601 (2019).
  14. S. Gopalakrishnan and A. Lamacraft, Unitary circuits of finite depth and infinite width from quantum channels, Phys. Rev. B 100, 064309 (2019).
  15. F. Fritzsch and T. Prosen, Eigenstate thermalization in dual-unitary quantum circuits: Asymptotics of spectral functions, Phys. Rev. E 103, 062133 (2021).
  16. S. Aravinda, S. A. Rather, and A. Lakshminarayan, From dual-unitary to quantum bernoulli circuits: Role of the entangling power in constructing a quantum ergodic hierarchy, Phys. Rev. Research 3, 043034 (2021).
  17. R. Suzuki, K. Mitarai, and K. Fujii, Computational power of one- and two-dimensional dual-unitary quantum circuits, Quantum 6, 631 (2022).
  18. B. Bertini, P. Kos, and T. Prosen, Operator entanglement in local quantum circuits i: Chaotic dual-unitary circuits, SciPost Phys. 8 (2020).
  19. P. W. Claeys and A. Lamacraft, Maximum velocity quantum circuits, Phys. Rev. Research 2, 033032 (2020).
  20. X.-H. Yu, Z. Wang, and P. Kos, Hierarchical generalization of dual unitarity, arXiv:2307.03138  (2023).
  21. B. Bertini, P. Kos, and T. Prosen, Localised dynamics in the floquet quantum east model, arXiv:2306.12467  (2023a).
  22. T. Zhou and A. W. Harrow, Maximal entanglement velocity implies dual unitarity, Phys. Rev. B 106, l201104 (2022).
  23. A. Larkin and Y. N. Ovchinnikov, Quasiclassical method in the theory of superconductivity, Sov. Phys. JETP 28, 1200 (1969).
  24. S. H. Shenker and D. Stanford, Black holes and the butterfly effect, J. High Energy Phys. 2014 (3).
  25. A. Foligno, P. Kos, and B. Bertini, Quantum information spreading in generalised dual-unitary circuits, arXiv:2312.02940  (2023a).
  26. S. A. Rather, S. Aravinda, and A. Lakshminarayan, Creating ensembles of dual unitary and maximally entangling quantum evolutions, Phys. Rev. Lett. 125, 070501 (2020).
  27. M. A. Rampp, R. Moessner, and P. W. Claeys, From dual unitarity to generic quantum operator spreading, Phys. Rev. Lett. 130, 130402 (2023).
  28. P. W. Claeys and A. Lamacraft, Ergodic and nonergodic dual-unitary quantum circuits with arbitrary local Hilbert space dimension, Phys. Rev. Lett. 126, 100603 (2021).
  29. P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, J. High Energy Phys. 2007 (09), 120.
  30. The special feature of the Hayden-Preskill protocol is that the recovery is assisted by entanglement with the initial state in the complement of A𝐴Aitalic_A.
  31. M. A. Rampp and P. W. Claeys, Hayden-Preskill recovery in chaotic and integrable unitary circuit dynamics, arXiv:2312.03838  (2023).
  32. W. Dür, G. Vidal, and J. I. Cirac, Optimal conversion of nonlocal unitary operations, Phys. Rev. Lett. 89, 057901 (2002).
  33. A. Müller-Hermes and I. Nechita, Operator Schmidt ranks of bipartite unitary matrices, Linear Algebra and its Applications 557, 174 (2018).
  34. S. M. Cohen and L. Yu, All unitaries having operator Schmidt rank 2 are controlled unitaries, Phys. Rev. A 87, 022329 (2013).
  35. L. Chen and L. Yu, Nonlocal and controlled unitary operators of Schmidt rank three, Phys. Rev. A 89, 062326 (2014).
  36. M. Mezei, On entanglement spreading from holography, J. High Energy Phys. 2017 (5).
  37. T. Hartman and N. Afkhami-Jeddi, Speed limits for entanglement, arXiv:1512.02695  (2015).
  38. T. Hartman and J. Maldacena, Time evolution of entanglement entropy from black hole interiors, J. High Energy Phys. 2013 (5).
  39. H. Liu and S. J. Suh, Entanglement tsunami: Universal scaling in holographic thermalization, Phys. Rev. Lett. 112, 011601 (2014a).
  40. H. Liu and S. J. Suh, Entanglement growth during thermalization in holographic systems, Phys. Rev. D 89, 066012 (2014b).
  41. S. Leichenauer and M. Moosa, Entanglement tsunami in (1+1)-dimensions, Phys. Rev. D 92, 126004 (2015).
  42. M. Mezei and D. Stanford, On entanglement spreading in chaotic systems, J. High Energy Phys. 2017 (5).
  43. A. Lerose, M. Sonner, and D. A. Abanin, Influence matrix approach to many-body Floquet dynamics, Phys. Rev. X 11, 021040 (2021).
  44. M. Sonner, A. Lerose, and D. A. Abanin, Influence functional of many-body systems: Temporal entanglement and matrix-product state representation, Ann. Phys. (NY) 435, 168677 (2021).
  45. A. Foligno, T. Zhou, and B. Bertini, Temporal entanglement in chaotic quantum circuits, Phys. Rev. X 13, 041008 (2023b).
  46. Z. Gong, A. Nahum, and L. Piroli, Coarse-grained entanglement and operator growth in anomalous dynamics, Phys. Rev. Lett. 128, 080602 (2022).
  47. B. Bertini and L. Piroli, Scrambling in random unitary circuits: Exact results, Phys. Rev. B 102, 064305 (2020).
  48. B. Bertini, P. Kos, and T. Prosen, Exact spectral statistics in strongly localized circuits, Phys. Rev. B 105, 165142 (2022).
  49. J. E. Tyson, Operator-Schmidt decompositions and the Fourier transform, with applications to the operator-Schmidt numbers of unitaries, J. Phys. A 36, 10101 (2003).
  50. P. Zanardi, Entanglement of quantum evolutions, Phys. Rev. A 63, 040304 (2001).
  51. M. Fishman, S. R. White, and E. M. Stoudenmire, The ITensor Software Library for Tensor Network Calculations, SciPost Phys. Codebases , 4 (2022).
Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: