Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Quantum squeezing induced quantum entanglement and EPR steering in coupled optomechanical system (2312.12310v1)

Published 19 Dec 2023 in quant-ph

Abstract: We propose a theoretical project in which quantum squeezing induces quantum entanglement and Einstein-Podolsky-Rosen steering in a coupled whispering-gallery-mode optomechanical system. Through pumping the $\chi{(2)}$-nonlinear resonator with the phase matching condition, the generated squeezed resonator mode and the mechanical mode of the optomechanical resonator can generate strong quantum entanglement and EPR steering, where the squeezing of the nonlinear resonator plays the vital role. The transitions from zero entanglement to strong entanglement and one-way steering to two-way steering can be realized by adjusting the system parameters appropriately. The photon-photon entanglement and steering between the two resonators can also be obtained by deducing the amplitude of the driving laser. Our project does not need an extraordinarily squeezed field, and it is convenient to manipulate and provides a novel and flexible avenue for diverse applications in quantum technology dependent on both optomechanical and photon-photon entanglement and steering.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (63)
  1. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” 10.1103/RevModPhys.86.1391Rev. Mod. Phys. 86(4), 1391-1452 (2014).
  2. D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” 10.1103/PhysRevLett.98.030405Phys. Rev. Lett. 98(3), 030405 (2007).
  3. D. G. Lai, W. Qin, B. P. Hou, A. Miranowicz, and F. Nori, “Significant enhancement in refrigeration and entanglement in auxiliary-cavity-assisted optomechanical systems,” 10.1103/PhysRevA.104.043521Phys. Rev. A 104(4), 043521 (2021).
  4. A. Mari and J. Eisert, “Gently modulating optomechanical systems,” 10.1103/PhysRevLett.103.213603Phys. Rev. Lett. 103(21), 213603 (2009).
  5. M. Wang, X. Y. Lü, Y. D. Wang, J. Q. You, and Y. Wu, “Macroscopic quantum entanglement in modulated optomechanics,” 10.1103/PhysRevA.94.053807Phys. Rev. A 94(5), 053807 (2016).
  6. D. Miki, N. Matsumoto, A. Matsumura, T. Shichijo, Y. Sugiyama, K. Yamamoto, and N. Yamamoto, “Generating quantum entanglement between macroscopic objects with continuous measurement and feedback control,” 10.1103/PhysRevA.107.032410Phys. Rev. A 107(3), 032410 (2023).
  7. Y. F. Jiao, S. D. Zhang, Y. L. Zhang, A. Miranowicz, L. M. Kuang, and H. Jing, “Nonreciprocal optomechanical entanglement against backscattering losses,” 10.1103/PhysRevLett.125.143605Phys. Rev. Lett. 125(14), 143605 (2020).
  8. D. G. Lai, J. Q. Liao, A. Miranowicz, and F. Nori, “Noise-tolerant optomechanical entanglement via synthetic magnetism,” 10.1103/PhysRevLett.129.063602Phys. Rev. Lett. 129(6), 063602 (2022).
  9. Z. Q. Liu, C. S. Hu, Y. K. Jiang, W. J. Su, H. Wu, Y. Li, and S. B. Zheng, “Engineering optomechanical entanglement via dual-mode cooling with a single reservoir,” 10.1103/PhysRevA.103.023525Phys. Rev. A 103(2), 023525 (2021).
  10. X. Hu, “Entanglement generation by dissipation in or beyond dark resonances,” 10.1103/PhysRevA.92.022329Phys. Rev. A 92(2), 022329 (2015).
  11. C. S. Hu, Z. Q. Liu, Y. Liu, L. T. Shen, H. Wu, and S. B. Zheng, “Entanglement beating in a cavity optomechanical system under two-field driving,” 10.1103/PhysRevA.101.033810Phys. Rev. A 101(3), 033810 (2020).
  12. C. F. Ockeloen-Korppi, E. Damskägg, J. M. Pirkkalainen, M. Asjad, A. A. Clerk, F. Massel, M. J. Woolley, and M. A. Sillanpää, “Stabilized entanglement of massive mechanical oscillators,” 10.1038/s41586-018-0038-xNature 556, 478-482 (2018).
  13. C. Genes, D. Vitali, and P. Tombesi, “Emergence of atom-light-mirror entanglement inside an optical cavity,” 10.1103/PhysRevA.77.050307Phys. Rev. A 77(5), 050307(R) (2008).
  14. J. Li, S. Y. Zhu, and G. S. Agarwal, “Magnon-photon-phonon entanglement in cavity magnomechanics,” 10.1103/PhysRevLett.121.203601Phys. Rev. Lett. 121(20), 203601 (2018).
  15. X. Z. Hao, X. Y. Zhang, Y. H. Zhou, W. Li, S. C. Hou, and X. X. Yi, “Dynamical bipartite and tripartite entanglement of mechanical oscillators in an optomechanical array,” 10.1103/PhysRevA.104.053515Phys. Rev. A 104(5), 053515 (2021).
  16. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” 10.1103/PhysRev.47.777Phys. Rev. 47(10), 777-780 (1935).
  17. E. Schrödinger, “Discussion of probability relations between separated systems,” 10.1017/S0305004100013554Math. Proc. Cambridge Philos. Soc. 31, 555-563 (1935).
  18. R. Uola, A. C. S. Costa, H. C. Nguyen, and O. Gühne, “Quantum steering,” 10.1103/RevModPhys.92.015001Rev. Mod. Phys. 92(1), 015001 (2020).
  19. M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: The Einstein-Podolsky-Rosen paradox: from concepts to applications,” 10.1103/RevModPhys.81.1727Rev. Mod. Phys. 81(4), 1727-1751 (2009).
  20. I. Kogias, A. R. Lee, S. Ragy, and G. Adesso, “Quantification of Gaussian quantum steering,” 10.1103/PhysRevLett.114.060403Phys. Rev. Lett. 114(6), 060403 (2015).
  21. Q. He, L. Rosales-Zárate, G. Adesso, and M. D. Reid, “Secure continuous variable teleportation and Einstein-Podolsky-Rosen steering,” 10.1103/PhysRevLett.115.180502Phys. Rev. Lett. 115(18), 180502 (2015).
  22. M. Frigerio, S. Olivares, and M. G. A. Paris, “Steering nonclassicality of Gaussian states,” 10.1103/PhysRevA.103.022209Phys. Rev. A 103(2), 022209 (2021).
  23. R. Y. Teh, M. Gessner, M. D. Reid, and M. Fadel, “Full multipartite steering inseparability, genuine multipartite steering, and monogamy for continuous-variable systems,” 10.1103/PhysRevA.105.012202Phys. Rev. A 105(1), 012202 (2022).
  24. R. V. Nery, M. M. Taddei, P. Sahium, S. P. Walborn, L. Aolita, and G. H. Aguilar, “Distillation of quantum steering,” 10.1103/PhysRevLett.124.120402Phys. Rev. Lett. 124(12), 120402 (2020).
  25. X. Deng, Y. Xiang, C. Tian, G. Adesso, Q. He, Q. Gong, X. Su, C. Xie, and K. Peng, “Demonstration of monogamy relations for Einstein-Podolsky-Rosen steering in Gaussian cluster states,” 10.1103/PhysRevLett.118.230501Phys. Rev. Lett. 118(23), 230501 (2017).
  26. L. Ma, X. Lei, J. Cheng, Z. Yan, and X. Jia, “Deterministic manipulation of steering between distant quantum network nodes,” 10.1364/OE.479182Opt. Express 31(5), 8257-8266 (2023).
  27. Y. Liang, R. Yang, J. Zhang, and T. Zhang, “Hexapartite steering based on a four-wave-mixing process with a spatially structured pump,” 10.1364/OE.486260Opt. Express 31(7), 11775-11787 (2023).
  28. D. Kong, J. Xu, Y. Tian, F. Wang, and X. Hu, “Remote asymmetric Einstein-Podolsky-Rosen steering of magnons via a single pathway of Bogoliubov dissipation,” 10.1103/PhysRevResearch.4.013084Phys. Rev. Res. 4(1), 013084 (2022).
  29. Q. Guo, M. R. Wei, C. H. Bai, Y. Zhang, G. Li, and T. Zhang, “Manipulation and enhancement of Einstein-Podolsky-Rosen steering between two mechanical modes generated by two Bogoliubov dissipation pathways,” 10.1103/PhysRevResearch.5.013073Phys. Rev. Res. 5(1), 013073 (2023).
  30. S. Zheng, F. Sun, Y. Lai, Q. Gong, and Q. He, “Manipulation and enhancement of asymmetric steering via interference effects induced by closed-loop coupling,” 10.1103/PhysRevA.99.022335Phys. Rev. A 99(2), 022335 (2019).
  31. H. Tan and J. Li, “Einstein-Podolsky-Rosen entanglement and asymmetric steering between distant macroscopic mechanical and magnonic systems,” 10.1103/PhysRevResearch.3.013192Phys. Rev. Res. 3(1), 013192 (2021).
  32. Y. C. Liu, Y. F. Xiao, X. Luan, Q. Gong, and C. W. Wong,“Coupled cavities for motional ground-state cooling and strong optomechanical coupling,” 10.1103/PhysRevA.91.033818Phys. Rev. A 91(3), 033818 (2015).
  33. C. H. Bai, D. Y. Wang, S. Zhang, S. Liu, and H. F. Wang, “Engineering of strong mechanical squeezing via the joint effect between Duffing nonlinearity and parametric pump driving,” 10.1364/PRJ.7.001229Photon. Res. 7(11), 1229-1239 (2019).
  34. J. Q. Liao and C. K. Law, “Parametric generation of quadrature squeezing of mirrors in cavity optomechanics,” 10.1103/PhysRevA.83.033820Phys. Rev. A 83(3), 033820 (2011).
  35. R. Zhang, Y. Fang, Y. Y. Wang, S. Chesi, and Y. D. Wang, “Strong mechanical squeezing in an unresolved-sideband optomechanical system,” 10.1103/PhysRevA.99.043805Phys. Rev. A 99(4), 043805 (2019).
  36. C. W. Wang, W. Niu, Y. Zhang, J. Cheng, and W. Z. Zhang, “Optomechanical noise suppression with the optimal squeezing process,” 10.1364/OE.477710Opt. Express 31(7), 11561-11577 (2023).
  37. B. Xiong, S. Chao, C. Shan, and J. Liu, “Optomechanical squeezing with pulse modulation,” 10.1364/OL.471230Opt. Lett. 47(21), 5545-5548 (2022).
  38. J. Huang, D. G. Lai, C. Liu, J. F. Huang, F. Nori, and J. Q. Liao, “Multimode optomechanical cooling via general dark-mode control,” 10.1103/PhysRevA.106.013526Phys. Rev. A 106(1), 013526 (2022).
  39. G. S. Agarwal and S. Huang, “Strong mechanical squeezing and its detection,” 10.1103/PhysRevA.93.043844Phys. Rev. A 93(4), 043844 (2016).
  40. W. Zhang, T. Wang, X. Han, S. Zhang, and H. F. Wang, “Mechanical squeezing induced by Duffing nonlinearity and two driving tones in an optomechanical system,” 10.1016/j.physleta.2021.127824Phys. Lett. A 424, 127824(2022).
  41. P. Vezio, A. Chowdhury, M. Bonaldi, A. Borrielli, F. Marino, B. Morana, G.A. Prodi, P.M. Sarro, E. Serra, and F. Marin, “Quantum motion of a squeezed mechanical oscillator attained via an optomechanical experiment,” 10.1103/PhysRevA.102.053505Phys. Rev. A 102(5), 053505 (2020).
  42. X. Y. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, and F. Nori, “Squeezed optomechanics with phase-matched amplification and dissipation,” 10.1103/PhysRevLett.114.093602Phys. Rev. Lett. 114(9), 093602 (2015).
  43. W. Qin, A. Miranowicz, P. B. Li, X. Y. Lü, J. Q. You, and F. Nori, “Exponentially enhanced light-matter interaction, cooperativities, and steady-state entanglement using parametric amplification,” 10.1103/PhysRevLett.120.093601Phys. Rev. Lett. 120(9), 093601 (2018)
  44. Y. Wang, C. Li, E. M. Sampuli, J. Song, Y. Jiang, and Y. Xia “Enhancement of coherent dipole coupling between two atoms via squeezing a cavity mode,” 10.1103/PhysRevA.99.023833Phys. Rev. A 99(2), 023833 (2019).
  45. Y. J. Ma, X. C. Gao, S. X. Wu, and C. S. Yu, “Quantum speed limit of a single atom in a squeezed optical cavity mode,” 10.1088/1674-1056/acbd2bChin. Phys. B 32(4), 040308 (2023).
  46. L. Tang, J. Tang, M. Chen, F. Nori, M. Xiao, and K. Xia, “Quantum squeezing induced optical nonreciprocity,” 10.1103/PhysRevLett.128.083604Phys. Rev. Lett. 128(8), 083604 (2022).
  47. B. Peng, S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, “Parity-time-symmetric whispering-gallery microcavities,” 10.1038/NPHYS2927Nature Phys. 10, 394-398 (2014).
  48. L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” 10.1038/NPHOTON.2014.133Nature Photon. 8, 524-529 (2014).
  49. H. Jing, Ş. K. Özdemir, Z. Geng, J. Zhang, X. Y. Lü, B. Peng, L. Yang, and F. Nori, “Optomechanically-induced transparency in parity-time-symmetric microresonators,” 10.1038/srep09663Sci. Rep. 5, 9663 (2015).
  50. Z. Shen, Y. L. Zhang, Y. Chen, Y. F. Xiao, C. L. Zou, G. C. Guo, and C. H. Dong, “Nonreciprocal frequency conversion and mode routing in a microresonator,” 10.1103/PhysRevLett.130.013601Phys. Rev. Lett. 130(1), 013601 (2023).
  51. C. Lei and J. Ren, “Quantum-interference-enhanced phonon laser in cavity optomechanics,” 10.1103/PhysRevApplied.19.054093Phys. Rev. Appl. 19(5), 054093 (2023).
  52. D. Y. Wang, L. L. Yan, S. L. Su, C. H. Bai, H. F. Wand, and E. Liang, “Squeezing-induced nonreciprocal photon blockade in an optomechanical microresonator,” 10.1364/OE.493208Opt. Express 31(14), 22343-22357 (2023).
  53. Z. Li, X. Li, and X. Zhong, “Optomechanical entanglement affected by exceptional point in a WGM resonator system,” 10.1364/OE.488948Opt. Express 31(12), 19382-19391 (2023).
  54. W. Zhang, T. Wang, X. Han, S. Zhang, and H. F. Wang, “Quantum entanglement and one-way steering in a cavity magnomechanical system via a squeezed vacuum field,” 10.1364/OE.453787Opt. Express 30(7), 10969-10980 (2022).
  55. S. X. Wu, C. H. Bai, G. Li, C. S Yu, and T. Zhang, “Enhancing the quantum entanglement and EPR steering of a coupled optomechanical system with a squeezed vacuum field,” 10.1364/JOSAB.495520J. Opt. Soc. Am. B 40(11), 2885-2893 (2023).
  56. Y. D. Wang and A. A. Clerk, “Reservoir-engineered entanglement in optomechanical systems,” 10.1103/PhysRevLett.110.253601Phys. Rev. Lett. 110(25), 253601 (2013).
  57. J. Li, I. M. Haghighi, N. Malossi, S. Zippilli, and D. Vitali, “Generation and detection of large and robust entanglement between two different mechanical resonators in cavity optomechanics.” 10.1088/1367-2630/17/10/103037New J. Phys. 17(10) 103037 (2015).
  58. G. Vidal and R. F. Werner, “Computable measure of entanglement,” 10.1103/PhysRevA.65.032314Phys. Rev. A 65(3), 032314 (2002).
  59. G. Adesso, A. Serafini, and F. Illuminati, “Extremal entanglement and mixedness in continuous variable systems,” 10.1103/PhysRevA.70.022318Phys. Rev. A 70(2), 022318 (2004).
  60. M. B. Plenio, “Logarithmic Negativity: A full entanglement monotone that is not convex,” 10.1103/PhysRevLett.95.090503Phys. Rev. Lett. 95, 090503 (2005).
  61. L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, “Inseparability criterion for continuous variable systems,” 10.1103/PhysRevLett.84.2722Phys. Rev. Lett. 84(12), 2722-2725 (2000).
  62. R. Simon, “Peres-Horodecki separability criterion for continuous variable systems,” 10.1103/PhysRevLett.84.2726Phys. Rev. Lett. 84(12), 2726-2729 (2000).
  63. E. X. DeJesus and C. Kaufman, “Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations,” 10.1103/PhysRevA.35.5288Phys. Rev. A 35(12), 5288-5290 (1987).
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.