Disentangling the Physics of the Attractive Hubbard Model via the Accessible and Symmetry-Resolved Entanglement Entropies
Abstract: The complicated ways in which electrons interact in many-body systems such as molecules and materials have long been viewed through the lens of local electron correlation and associated correlation functions. However, quantum information science has demonstrated that more global diagnostics of quantum states, like the entanglement entropy, can provide a complementary and clarifying lens on electronic behavior. One particularly useful measure that can be used to distinguish between quantum and classical sources of entanglement is the accessible entanglement, the entanglement available as a quantum resource for systems subject to conservation laws, such as fixed particle number, due to superselection rules. In this work, we introduce an algorithm and demonstrate how to compute accessible and symmetry-resolved entanglements for interacting fermion systems. This is accomplished by combining an incremental version of the swap algorithm with a recursive Auxiliary Field Quantum Monte Carlo algorithm recently developed by the authors. We apply these tools to study the pairing and charge density waves exhibited in the paradigmatic attractive Hubbard model via entanglement. We find that the particle and spin symmetry-resolved entanglements and their related full probability distribution functions show very clear - and unique - signatures of the underlying electronic behavior even when those features are less pronounced in more conventional correlation functions. Overall, this work provides a systematic means of characterizing the entanglement within quantum systems that can grant a deeper understanding of the complicated electronic behavior that underlies quantum phase transitions and crossovers in many-body systems.
- S. T. Bramwell and B. Keimer, Neutron scattering from quantum condensed matter, Nature Materials 13, 763 (2014).
- S. Lovesey, Theory of Neutron Scattering from Condensed Matter, International series of monographs on physics No. v. 2 (Clarendon Press, Oxford, UK, 1986).
- M. R. Dowling, A. C. Doherty, and H. M. Wiseman, Entanglement of indistinguishable particles in condensed-matter physics, Phys. Rev. A 73, 052323 (2006).
- N. Laflorencie, Quantum entanglement in condensed matter systems, Phys. Rep. 646, 1 (2016a).
- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, USA, 2011).
- A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96, 110404 (2006).
- F. Plasser, Entanglement entropy of electronic excitations, The Journal of Chemical Physics 144, 194107 (2016).
- C. J. Stein and M. Reiher, Automated selection of active orbital spaces, Journal of Chemical Theory and Computation 12, 1760 (2016).
- Z. Huang and S. Kais, Entanglement as measure of electron–electron correlation in quantum chemistry calculations, Chemical Physics Letters 413, 1 (2005).
- J. Rissler, R. M. Noack, and S. R. White, Measuring orbital interaction using quantum information theory, Chemical Physics 323, 519 (2006).
- K. Boguslawski and P. Tecmer, Orbital entanglement in quantum chemistry, International Journal of Quantum Chemistry 115, 1289 (2015).
- M. Levin and X.-G. Wen, Detecting topological order in a ground state wave function, Phys. Rev. Lett. 96, 110405 (2006).
- S. V. Isakov, R. G. Melko, and M. B. Hastings, Universal signatures of fractionalized quantum critical points, Science 335, 193 (2012).
- X.-G. Wen, Choreographed entanglement dances: topological states of quantum matter, Science 363, 3099 (2019).
- N. Laflorencie, Quantum entanglement in condensed matter systems, Physics Reports 646, 1 (2016b), quantum entanglement in condensed matter systems.
- H. M. Wiseman and J. A. Vaccaro, Entanglement of indistinguishable particles shared between two parties, Phys. Rev. Lett. 91, 097902 (2003).
- S. D. Bartlett and H. M. Wiseman, Entanglement constrained by superselection rules, Phys. Rev. Lett. 91, 097903 (2003).
- H. Barghathi, C. M. Herdman, and A. Del Maestro, Rényi generalization of the accessible entanglement entropy, Phys. Rev. Lett. 121, 150501 (2018).
- H. Barghathi, E. Casiano-Diaz, and A. Del Maestro, Operationally accessible entanglement of one-dimensional spinless fermions, Phys. Rev. A 100, 022324 (2019).
- A. Kitaev, D. Mayers, and J. Preskill, Superselection rules and quantum protocols, Phys. Rev. A 69, 052326 (2004).
- N. Schuch, F. Verstraete, and J. I. Cirac, Nonlocal resources in the presence of superselection rules, Phys. Rev. Lett. 92, 087904 (2004).
- I. Klich and L. S. Levitov, Scaling of entanglement entropy and superselection rules (2008), arXiv:0812.0006 [quant-ph] .
- H. Barghathi, J. Yu, and A. Del Maestro, Theory of noninteracting fermions and bosons in the canonical ensemble, Phys. Rev. Res. 2, 043206 (2020).
- M. Goldstein and E. Sela, Symmetry-resolved entanglement in many-body systems, Phys. Rev. Lett. 120, 200602 (2018).
- D. Faiez and D. Šafránek, How much entanglement can be created in a closed system, Phys. Rev. B 101, 060401 (2020a).
- D. X. Horváth and P. Calabrese, Symmetry resolved entanglement in integrable field theories via form factor bootstrap, Journal of High Energy Physics 2020, 131 (2020).
- R. Bonsignori and P. Calabrese, Boundary effects on symmetry resolved entanglement, Journal of Physics A: Mathematical and Theoretical 54, 015005 (2020).
- D. X. Horváth, L. Capizzi, and P. Calabrese, U(1) symmetry resolved entanglement in free 1+1 dimensional field theories via form factor bootstrap, Journal of High Energy Physics 2021, 197 (2021).
- S. Murciano, R. Bonsignori, and P. Calabrese, Symmetry decomposition of negativity of massless free fermions, SciPost Phys. 10, 111 (2021).
- B. Estienne, Y. Ikhlef, and A. Morin-Duchesne, Finite-size corrections in critical symmetry-resolved entanglement, SciPost Phys. 10, 54 (2021).
- A. Foligno, S. Murciano, and P. Calabrese, Entanglement resolution of free dirac fermions on a torus, Journal of High Energy Physics 2023, 96 (2023).
- C. Northe, Entanglement resolution with respect to conformal symmetry, Phys. Rev. Lett. 131, 151601 (2023).
- M. Fossati, F. Ares, and P. Calabrese, Symmetry-resolved entanglement in critical non-hermitian systems, Phys. Rev. B 107, 205153 (2023).
- D. Faiez and D. Šafránek, How much entanglement can be created in a closed system, Phys. Rev. B 101, 060401 (2020b).
- S. Murciano, P. Ruggiero, and P. Calabrese, Symmetry resolved entanglement in two-dimensional systems via dimensional reduction, Journal of Statistical Mechanics: Theory and Experiment 2020, 083102 (2020).
- S. Humeniuk and T. Roscilde, Quantum monte carlo calculation of entanglement rényi entropies for generic quantum systems, Phys. Rev. B 86, 235116 (2012).
- J. McMinis and N. M. Tubman, Renyi entropy of the interacting fermi liquid, Phys. Rev. B 87, 081108 (2013).
- T. Grover, Entanglement of interacting fermions in quantum monte carlo calculations, Phys. Rev. Letters 111 (2013).
- N. M. Tubman and D. C. Yang, Calculating the entanglement spectrum in quantum monte carlo with application to ab initio hamiltonians, Phys. Rev. B 90, 081116 (2014).
- C. M. Herdman, A. Rommal, and A. Del Maestro, Quantum monte carlo measurement of the chemical potential of He4superscriptHe4{}^{4}\mathrm{He}start_FLOATSUPERSCRIPT 4 end_FLOATSUPERSCRIPT roman_He, Phys. Rev. B 89, 224502 (2014).
- F. F. Assaad, Stable quantum monte carlo simulations for entanglement spectra of interacting fermions, Phys. Rev. B 91, 125146 (2015).
- J. E. Drut and W. J. Porter, Hybrid monte carlo approach to the entanglement entropy of interacting fermions, Phys. Rev. B 92, 125126 (2015).
- E. Casiano-Diaz, C. M. Herdman, and A. D. Maestro, A path integral ground state Monte Carlo algorithm for entanglement of lattice bosons, SciPost Physics 14, 054 (2023), 2207.11301 .
- P. Calabrese and J. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech.: Theor. Exp. 2004, 06002 (2004).
- G. Parez, R. Bonsignori, and P. Calabrese, Exact quench dynamics of symmetry resolved entanglement in a free fermion chain, Journal of Statistical Mechanics: Theory and Experiment 2021, 093102 (2021a).
- G. Parez, R. Bonsignori, and P. Calabrese, Quasiparticle dynamics of symmetry-resolved entanglement after a quench: Examples of conformal field theories and free fermions, Phys. Rev. B 103, L041104 (2021b).
- N. Laflorencie and S. Rachel, Spin-resolved entanglement spectroscopy of critical spin chains and luttinger liquids, Journal of Statistical Mechanics: Theory and Experiment 2014, P11013 (2014).
- S. Zhang, J. Carlson, and J. E. Gubernatis, Constrained path monte carlo method for fermion ground states, Phys. Rev. B 55, 7464 (1997).
- J. E. Hirsch, Two-dimensional hubbard model: Numerical simulation study, Phys. Rev. B 31, 4403 (1985).
- S. Zhang and H. Krakauer, Quantum monte carlo method using phase-free random walks with slater determinants, Phys. Rev. Lett. 90, 136401 (2003).
- R. L. Stratonovich, On a method of calculating quantum distribution functions, Sov. Phys. Dokl. 2, 416 (1958).
- J. Hubbard, Calculation of partition functions, Phys. Rev. Lett. 3, 77 (1959).
- J. E. Hirsch, Discrete hubbard-stratonovich transformation for fermion lattice models, Phys. Rev. B 28, 4059 (1983).
- M. Motta and S. Zhang, Ab initio computations of molecular systems by the auxiliary-field quantum Monte Carlo method, WIREs Comp. Mol. Sci. 8, 1364 (2018).
- P. Broecker and S. Trebst, Rényi entropies of interacting fermions from determinantal quantum monte carlo simulations, J. Stat. Mech.: Theor. Exp. 2014, P08015 (2014).
- P. Broecker and S. Trebst, Numerical stabilization of entanglement computation in auxiliary-field quantum monte carlo simulations of interacting many-fermion systems, Physical Review E 94, 063306 (2016).
- J. D’Emidio, Entanglement entropy from nonequilibrium work, Physical Review Letters 124, 110602 (2020).
- Y. Da Liao, Controllable incremental algorithm for entanglement entropy and other observables with exponential variance explosion in many-body systems, arXiv:2307.10602 (2023).
- A. F. Ho, M. A. Cazalilla, and T. Giamarchi, Quantum simulation of the hubbard model: The attractive route, Phys. Rev. A 79, 033620 (2009).
- T. Shen, Source code for “Disentangling the Physics of the Attractive Hubbard Model via the Accessible and Symmetry-Resolved Entanglement Entropies“, GitHub (2023).
- T. Shen, H. Barghathi, A. Del Maestro, and B. Rubenstein, Data repository for “Disentangling the Physics of the Attractive Hubbard Model via the Accessible and Symmetry-Resolved Entanglement Entropies”, GitHub (2023b).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.