Calabi-Yau meets Gravity: A Calabi-Yau three-fold at fifth post-Minkowskian order (2312.11371v2)
Abstract: We study geometries occurring in Feynman integrals that contribute to the scattering of black holes in the post-Minkowskian expansion. These geometries become relevant to gravitational-wave production during the inspiralling phase of binary black hole mergers through the classical conservative potential. At fourth post-Minkowskian order, a K3 surface is known to occur in a three-loop integral, leading to elliptic integrals in the result. In this letter, we identify a Calabi-Yau three-fold in a four-loop integral, contributing at fifth post-Minkowskian order. The presence of this Calabi-Yau geometry indicates that completely new functions occur in the full analytical results at this order.
- B. P. Abbott et al. (LIGO Scientific, Virgo), Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016), arXiv:1602.03837 [gr-qc] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett. 119, 161101 (2017), arXiv:1710.05832 [gr-qc] .
- F. Pretorius, Evolution of binary black hole spacetimes, Phys. Rev. Lett. 95, 121101 (2005), arXiv:gr-qc/0507014 .
- W. D. Goldberger and I. Z. Rothstein, An Effective field theory of gravity for extended objects, Phys. Rev. D 73, 104029 (2006), arXiv:hep-th/0409156 .
- L. Blanchet, Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries, Living Rev. Rel. 17, 2 (2014), arXiv:1310.1528 [gr-qc] .
- M. Levi, Effective Field Theories of Post-Newtonian Gravity: A comprehensive review, Rept. Prog. Phys. 83, 075901 (2020), arXiv:1807.01699 [hep-th] .
- T. Damour, Gravitational scattering, post-Minkowskian approximation and Effective One-Body theory, Phys. Rev. D 94, 104015 (2016), arXiv:1609.00354 [gr-qc] .
- Y. Mino, M. Sasaki, and T. Tanaka, Gravitational radiation reaction to a particle motion, Phys. Rev. D 55, 3457 (1997), arXiv:gr-qc/9606018 .
- T. C. Quinn and R. M. Wald, An Axiomatic approach to electromagnetic and gravitational radiation reaction of particles in curved space-time, Phys. Rev. D 56, 3381 (1997), arXiv:gr-qc/9610053 .
- E. Poisson, A. Pound, and I. Vega, The Motion of point particles in curved spacetime, Living Rev. Rel. 14, 7 (2011), arXiv:1102.0529 [gr-qc] .
- L. Barack and A. Pound, Self-force and radiation reaction in general relativity, Rept. Prog. Phys. 82, 016904 (2019), arXiv:1805.10385 [gr-qc] .
- A. Buonanno and T. Damour, Effective one-body approach to general relativistic two-body dynamics, Phys. Rev. D 59, 084006 (1999), arXiv:gr-qc/9811091 .
- A. Buonanno and T. Damour, Transition from inspiral to plunge in binary black hole coalescences, Phys. Rev. D 62, 064015 (2000), arXiv:gr-qc/0001013 .
- C. Cheung, I. Z. Rothstein, and M. P. Solon, From Scattering Amplitudes to Classical Potentials in the Post-Minkowskian Expansion, Phys. Rev. Lett. 121, 251101 (2018), arXiv:1808.02489 [hep-th] .
- A. Koemans Collado, P. Di Vecchia, and R. Russo, Revisiting the second post-Minkowskian eikonal and the dynamics of binary black holes, Phys. Rev. D 100, 066028 (2019), arXiv:1904.02667 [hep-th] .
- G. Kälin and R. A. Porto, From Boundary Data to Bound States, JHEP 01, 072, arXiv:1910.03008 [hep-th] .
- G. Kälin and R. A. Porto, From boundary data to bound states. Part II. Scattering angle to dynamical invariants (with twist), JHEP 02, 120, arXiv:1911.09130 [hep-th] .
- G. Kälin and R. A. Porto, Post-Minkowskian Effective Field Theory for Conservative Binary Dynamics, JHEP 11, 106, arXiv:2006.01184 [hep-th] .
- G. Kälin, Z. Liu, and R. A. Porto, Conservative Dynamics of Binary Systems to Third Post-Minkowskian Order from the Effective Field Theory Approach, Phys. Rev. Lett. 125, 261103 (2020), arXiv:2007.04977 [hep-th] .
- G. Mogull, J. Plefka, and J. Steinhoff, Classical black hole scattering from a worldline quantum field theory, JHEP 02, 048, arXiv:2010.02865 [hep-th] .
- G. Kälin, J. Neef, and R. A. Porto, Radiation-reaction in the Effective Field Theory approach to Post-Minkowskian dynamics, JHEP 01, 140, arXiv:2207.00580 [hep-th] .
- K.-T. Chen, Iterated path integrals, Bull. Am. Math. Soc. 83, 831 (1977).
- J. Broedel, C. Duhr, and N. Matthes, Meromorphic modular forms and the three-loop equal-mass banana integral, JHEP 02, 184, arXiv:2109.15251 [hep-th] .
- P. Lairez and P. Vanhove, Algorithms for minimal Picard–Fuchs operators of Feynman integrals, Lett. Math. Phys. 113, 37 (2023), arXiv:2209.10962 [hep-th] .
- C. Dlapa, J. M. Henn, and F. J. Wagner, An algorithmic approach to finding canonical differential equations for elliptic Feynman integrals, JHEP 08, 120, arXiv:2211.16357 [hep-ph] .
- A. V. Kotikov, Differential equations method: New technique for massive Feynman diagrams calculation, Phys. Lett. B 254, 158 (1991).
- F. Cachazo, Sharpening The Leading Singularity, (2008), arXiv:0803.1988 [hep-th] .
- P. A. Baikov, Explicit solutions of the multiloop integral recurrence relations and its application, Nucl. Instrum. Meth. A 389, 347 (1997), arXiv:hep-ph/9611449 .
- H. Frellesvig and C. G. Papadopoulos, Cuts of Feynman Integrals in Baikov representation, JHEP 04, 083, arXiv:1701.07356 [hep-ph] .
- H. Frellesvig, R. Morales, and M. Wilhelm, Classifying post-Minkowskian geometries for gravitational waves via loop-by-loop Baikov (To appear).
- P. V. Landshoff and J. C. Polkinghorne, Iterations of regge cuts, Phys. Rev. 181, 1989 (1969).
- T. Damour, High-energy gravitational scattering and the general relativistic two-body problem, Phys. Rev. D 97, 044038 (2018), arXiv:1710.10599 [gr-qc] .
- D. Neill and I. Z. Rothstein, Classical Space-Times from the S Matrix, Nucl. Phys. B 877, 177 (2013), arXiv:1304.7263 [hep-th] .
- M. Beneke and V. A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys. B 522, 321 (1998), arXiv:hep-ph/9711391 .
- K. G. Chetyrkin and F. V. Tkachov, Integration by parts: The algorithm to calculate β𝛽\betaitalic_β-functions in 4 loops, Nucl. Phys. B 192, 159 (1981).
- A. V. Smirnov, Algorithm FIRE – Feynman Integral REduction, JHEP 10, 107, arXiv:0807.3243 [hep-ph] .
- A. V. Smirnov and M. Zeng, FIRE 6.5: Feynman Integral Reduction with New Simplification Library, (2023), arXiv:2311.02370 [hep-ph] .
- P. Maierhöfer, J. Usovitsch, and P. Uwer, Kira—A Feynman integral reduction program, Comput. Phys. Commun. 230, 99 (2018), arXiv:1705.05610 [hep-ph] .
- R. N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, (2012), arXiv:1212.2685 [hep-ph] .
- R. Huang and Y. Zhang, On Genera of Curves from High-loop Generalized Unitarity Cuts, JHEP 04, 080, arXiv:1302.1023 [hep-ph] .
- A. Primo and L. Tancredi, On the maximal cut of Feynman integrals and the solution of their differential equations, Nucl. Phys. B 916, 94 (2017), arXiv:1610.08397 [hep-ph] .
- K. Westpfahl, High-Speed Scattering of Charged and Uncharged Particles in General Relativity, Fortsch. Phys. 33, 417 (1985).
- T. Damour and G. Schaefer, Redefinition of position variables and the reduction of higher order Lagrangians, J. Math. Phys. 32, 127 (1991).
- A. Buonanno, Reduction of the two-body dynamics to a one-body description in classical electrodynamics, Phys. Rev. D 62, 104022 (2000), arXiv:hep-th/0004042 .
- T. Hubsch, Calabi-Yau manifolds: A Bestiary for physicists (World Scientific, Singapore, 1994).
- M. Bogner, Algebraic characterization of differential operators of Calabi-Yau type, (2013), arXiv:1304.5434 [math.AG] .
- D. R. Morrison, Picard-Fuchs equations and mirror maps for hypersurfaces, AMS/IP Stud. Adv. Math. 9, 185 (1998), arXiv:hep-th/9111025 .
- G. Almkvist and W. Zudilin, Differential equations, mirror maps and zeta values, AMS/IP Studies in Adv. Math. 38, 481 (2004), arXiv:math/0402386 .
- Y. Yang and W. Zudilin, On Sp4𝑆subscript𝑝4Sp_{4}italic_S italic_p start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT modularity of Picard-Fuchs differential equations for Calabi-Yau threefolds, Contemp. Math. 517, 381 (2010), arXiv:0803.3322 [math.NT] .
- M. Bogner and S. Reiter, On symplectically rigid local systems of rank four and Calabi-Yau operators, (2011), arXiv:1105.1136 [math.AG] .
- D. van Straten, Calabi-Yau Operators, (2017), arXiv:1704.00164 [math.AG] .
- P. Candelas, X. De La Ossa, and D. Van Straten, Local Zeta Functions From Calabi-Yau Differential Equations, (2021), arXiv:2104.07816 [hep-th] .
- G. S. Joyce, Lattice Green function for the simple cubic lattice, J. Phys. A: Gen. Phys. 5, L65 (1972).
- G. S. Joyce, On the simple cubic lattice Green function, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 273, 583–610 (1973).
- H. A. Verrill, Root lattices and pencils of varieties, Journal of Mathematics of Kyoto University 36, 423 (1996).
- C. F. Doran, Picard-Fuchs uniformization: Modularity of the mirror map and mirror moonshine, (1998), arXiv:math/9812162 .
- J. M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110, 251601 (2013), arXiv:1304.1806 [hep-th] .
- H. Frellesvig, On epsilon factorized differential equations for elliptic Feynman integrals, JHEP 03, 079, arXiv:2110.07968 [hep-th] .
- S. Pögel, X. Wang, and S. Weinzierl, The three-loop equal-mass banana integral in ε𝜀\varepsilonitalic_ε-factorised form with meromorphic modular forms, JHEP 09, 062, arXiv:2207.12893 [hep-th] .
- H. Frellesvig and S. Weinzierl, On ε𝜀\varepsilonitalic_ε-factorised bases and pure Feynman integrals, (2023), arXiv:2301.02264 [hep-th] .
- A. Herderschee, R. Roiban, and F. Teng, The sub-leading scattering waveform from amplitudes, JHEP 06, 004, arXiv:2303.06112 [hep-th] .
- A. Georgoudis, C. Heissenberg, and I. Vazquez-Holm, Inelastic exponentiation and classical gravitational scattering at one loop, JHEP 06, 126, arXiv:2303.07006 [hep-th] .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.