Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Calabi-Yau meets Gravity: A Calabi-Yau three-fold at fifth post-Minkowskian order (2312.11371v2)

Published 18 Dec 2023 in hep-th and gr-qc

Abstract: We study geometries occurring in Feynman integrals that contribute to the scattering of black holes in the post-Minkowskian expansion. These geometries become relevant to gravitational-wave production during the inspiralling phase of binary black hole mergers through the classical conservative potential. At fourth post-Minkowskian order, a K3 surface is known to occur in a three-loop integral, leading to elliptic integrals in the result. In this letter, we identify a Calabi-Yau three-fold in a four-loop integral, contributing at fifth post-Minkowskian order. The presence of this Calabi-Yau geometry indicates that completely new functions occur in the full analytical results at this order.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (62)
  1. B. P. Abbott et al. (LIGO Scientific, Virgo), Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016), arXiv:1602.03837 [gr-qc] .
  2. B. P. Abbott et al. (LIGO Scientific, Virgo), GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett. 119, 161101 (2017), arXiv:1710.05832 [gr-qc] .
  3. F. Pretorius, Evolution of binary black hole spacetimes, Phys. Rev. Lett. 95, 121101 (2005), arXiv:gr-qc/0507014 .
  4. W. D. Goldberger and I. Z. Rothstein, An Effective field theory of gravity for extended objects, Phys. Rev. D 73, 104029 (2006), arXiv:hep-th/0409156 .
  5. L. Blanchet, Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries, Living Rev. Rel. 17, 2 (2014), arXiv:1310.1528 [gr-qc] .
  6. M. Levi, Effective Field Theories of Post-Newtonian Gravity: A comprehensive review, Rept. Prog. Phys. 83, 075901 (2020), arXiv:1807.01699 [hep-th] .
  7. T. Damour, Gravitational scattering, post-Minkowskian approximation and Effective One-Body theory, Phys. Rev. D 94, 104015 (2016), arXiv:1609.00354 [gr-qc] .
  8. Y. Mino, M. Sasaki, and T. Tanaka, Gravitational radiation reaction to a particle motion, Phys. Rev. D 55, 3457 (1997), arXiv:gr-qc/9606018 .
  9. T. C. Quinn and R. M. Wald, An Axiomatic approach to electromagnetic and gravitational radiation reaction of particles in curved space-time, Phys. Rev. D 56, 3381 (1997), arXiv:gr-qc/9610053 .
  10. E. Poisson, A. Pound, and I. Vega, The Motion of point particles in curved spacetime, Living Rev. Rel. 14, 7 (2011), arXiv:1102.0529 [gr-qc] .
  11. L. Barack and A. Pound, Self-force and radiation reaction in general relativity, Rept. Prog. Phys. 82, 016904 (2019), arXiv:1805.10385 [gr-qc] .
  12. A. Buonanno and T. Damour, Effective one-body approach to general relativistic two-body dynamics, Phys. Rev. D 59, 084006 (1999), arXiv:gr-qc/9811091 .
  13. A. Buonanno and T. Damour, Transition from inspiral to plunge in binary black hole coalescences, Phys. Rev. D 62, 064015 (2000), arXiv:gr-qc/0001013 .
  14. C. Cheung, I. Z. Rothstein, and M. P. Solon, From Scattering Amplitudes to Classical Potentials in the Post-Minkowskian Expansion, Phys. Rev. Lett. 121, 251101 (2018), arXiv:1808.02489 [hep-th] .
  15. A. Koemans Collado, P. Di Vecchia, and R. Russo, Revisiting the second post-Minkowskian eikonal and the dynamics of binary black holes, Phys. Rev. D 100, 066028 (2019), arXiv:1904.02667 [hep-th] .
  16. G. Kälin and R. A. Porto, From Boundary Data to Bound States, JHEP 01, 072, arXiv:1910.03008 [hep-th] .
  17. G. Kälin and R. A. Porto, From boundary data to bound states. Part II. Scattering angle to dynamical invariants (with twist), JHEP 02, 120, arXiv:1911.09130 [hep-th] .
  18. G. Kälin and R. A. Porto, Post-Minkowskian Effective Field Theory for Conservative Binary Dynamics, JHEP 11, 106, arXiv:2006.01184 [hep-th] .
  19. G. Kälin, Z. Liu, and R. A. Porto, Conservative Dynamics of Binary Systems to Third Post-Minkowskian Order from the Effective Field Theory Approach, Phys. Rev. Lett. 125, 261103 (2020), arXiv:2007.04977 [hep-th] .
  20. G. Mogull, J. Plefka, and J. Steinhoff, Classical black hole scattering from a worldline quantum field theory, JHEP 02, 048, arXiv:2010.02865 [hep-th] .
  21. G. Kälin, J. Neef, and R. A. Porto, Radiation-reaction in the Effective Field Theory approach to Post-Minkowskian dynamics, JHEP 01, 140, arXiv:2207.00580 [hep-th] .
  22. K.-T. Chen, Iterated path integrals, Bull. Am. Math. Soc. 83, 831 (1977).
  23. J. Broedel, C. Duhr, and N. Matthes, Meromorphic modular forms and the three-loop equal-mass banana integral, JHEP 02, 184, arXiv:2109.15251 [hep-th] .
  24. P. Lairez and P. Vanhove, Algorithms for minimal Picard–Fuchs operators of Feynman integrals, Lett. Math. Phys. 113, 37 (2023), arXiv:2209.10962 [hep-th] .
  25. C. Dlapa, J. M. Henn, and F. J. Wagner, An algorithmic approach to finding canonical differential equations for elliptic Feynman integrals, JHEP 08, 120, arXiv:2211.16357 [hep-ph] .
  26. A. V. Kotikov, Differential equations method: New technique for massive Feynman diagrams calculation, Phys. Lett. B 254, 158 (1991).
  27. F. Cachazo, Sharpening The Leading Singularity,   (2008), arXiv:0803.1988 [hep-th] .
  28. P. A. Baikov, Explicit solutions of the multiloop integral recurrence relations and its application, Nucl. Instrum. Meth. A 389, 347 (1997), arXiv:hep-ph/9611449 .
  29. H. Frellesvig and C. G. Papadopoulos, Cuts of Feynman Integrals in Baikov representation, JHEP 04, 083, arXiv:1701.07356 [hep-ph] .
  30. H. Frellesvig, R. Morales, and M. Wilhelm, Classifying post-Minkowskian geometries for gravitational waves via loop-by-loop Baikov (To appear).
  31. P. V. Landshoff and J. C. Polkinghorne, Iterations of regge cuts, Phys. Rev. 181, 1989 (1969).
  32. T. Damour, High-energy gravitational scattering and the general relativistic two-body problem, Phys. Rev. D 97, 044038 (2018), arXiv:1710.10599 [gr-qc] .
  33. D. Neill and I. Z. Rothstein, Classical Space-Times from the S Matrix, Nucl. Phys. B 877, 177 (2013), arXiv:1304.7263 [hep-th] .
  34. M. Beneke and V. A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys. B 522, 321 (1998), arXiv:hep-ph/9711391 .
  35. K. G. Chetyrkin and F. V. Tkachov, Integration by parts: The algorithm to calculate β𝛽\betaitalic_β-functions in 4 loops, Nucl. Phys. B 192, 159 (1981).
  36. A. V. Smirnov, Algorithm FIRE – Feynman Integral REduction, JHEP 10, 107, arXiv:0807.3243 [hep-ph] .
  37. A. V. Smirnov and M. Zeng, FIRE 6.5: Feynman Integral Reduction with New Simplification Library,   (2023), arXiv:2311.02370 [hep-ph] .
  38. P. Maierhöfer, J. Usovitsch, and P. Uwer, Kira—A Feynman integral reduction program, Comput. Phys. Commun. 230, 99 (2018), arXiv:1705.05610 [hep-ph] .
  39. R. N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction,   (2012), arXiv:1212.2685 [hep-ph] .
  40. R. Huang and Y. Zhang, On Genera of Curves from High-loop Generalized Unitarity Cuts, JHEP 04, 080, arXiv:1302.1023 [hep-ph] .
  41. A. Primo and L. Tancredi, On the maximal cut of Feynman integrals and the solution of their differential equations, Nucl. Phys. B 916, 94 (2017), arXiv:1610.08397 [hep-ph] .
  42. K. Westpfahl, High-Speed Scattering of Charged and Uncharged Particles in General Relativity, Fortsch. Phys. 33, 417 (1985).
  43. T. Damour and G. Schaefer, Redefinition of position variables and the reduction of higher order Lagrangians, J. Math. Phys. 32, 127 (1991).
  44. A. Buonanno, Reduction of the two-body dynamics to a one-body description in classical electrodynamics, Phys. Rev. D 62, 104022 (2000), arXiv:hep-th/0004042 .
  45. T. Hubsch, Calabi-Yau manifolds: A Bestiary for physicists (World Scientific, Singapore, 1994).
  46. M. Bogner, Algebraic characterization of differential operators of Calabi-Yau type,   (2013), arXiv:1304.5434 [math.AG] .
  47. D. R. Morrison, Picard-Fuchs equations and mirror maps for hypersurfaces, AMS/IP Stud. Adv. Math. 9, 185 (1998), arXiv:hep-th/9111025 .
  48. G. Almkvist and W. Zudilin, Differential equations, mirror maps and zeta values, AMS/IP Studies in Adv. Math. 38, 481 (2004), arXiv:math/0402386 .
  49. Y. Yang and W. Zudilin, On S⁢p4𝑆subscript𝑝4Sp_{4}italic_S italic_p start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT modularity of Picard-Fuchs differential equations for Calabi-Yau threefolds, Contemp. Math. 517, 381 (2010), arXiv:0803.3322 [math.NT] .
  50. M. Bogner and S. Reiter, On symplectically rigid local systems of rank four and Calabi-Yau operators,  (2011), arXiv:1105.1136 [math.AG] .
  51. D. van Straten, Calabi-Yau Operators,   (2017), arXiv:1704.00164 [math.AG] .
  52. P. Candelas, X. De La Ossa, and D. Van Straten, Local Zeta Functions From Calabi-Yau Differential Equations,   (2021), arXiv:2104.07816 [hep-th] .
  53. G. S. Joyce, Lattice Green function for the simple cubic lattice, J. Phys. A: Gen. Phys. 5, L65 (1972).
  54. G. S. Joyce, On the simple cubic lattice Green function, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 273, 583–610 (1973).
  55. H. A. Verrill, Root lattices and pencils of varieties, Journal of Mathematics of Kyoto University 36, 423 (1996).
  56. C. F. Doran, Picard-Fuchs uniformization: Modularity of the mirror map and mirror moonshine,   (1998), arXiv:math/9812162 .
  57. J. M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110, 251601 (2013), arXiv:1304.1806 [hep-th] .
  58. H. Frellesvig, On epsilon factorized differential equations for elliptic Feynman integrals, JHEP 03, 079, arXiv:2110.07968 [hep-th] .
  59. S. Pögel, X. Wang, and S. Weinzierl, The three-loop equal-mass banana integral in ε𝜀\varepsilonitalic_ε-factorised form with meromorphic modular forms, JHEP 09, 062, arXiv:2207.12893 [hep-th] .
  60. H. Frellesvig and S. Weinzierl, On ε𝜀\varepsilonitalic_ε-factorised bases and pure Feynman integrals,   (2023), arXiv:2301.02264 [hep-th] .
  61. A. Herderschee, R. Roiban, and F. Teng, The sub-leading scattering waveform from amplitudes, JHEP 06, 004, arXiv:2303.06112 [hep-th] .
  62. A. Georgoudis, C. Heissenberg, and I. Vazquez-Holm, Inelastic exponentiation and classical gravitational scattering at one loop, JHEP 06, 126, arXiv:2303.07006 [hep-th] .
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube