Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The interior penalty virtual element method for fourth-order singular perturbation problems (2312.10860v1)

Published 18 Dec 2023 in math.NA and cs.NA

Abstract: This paper is dedicated to the numerical solution of a fourth-order singular perturbation problem using the interior penalty virtual element method (IPVEM) proposed in [42]. The study introduces modifications to the jumps and averages in the penalty term, as well as presents an automated mesh-dependent selection of the penalty parameter. Drawing inspiration from the modified Morley finite element methods, we leverage the conforming interpolation technique to handle the lower part of the bilinear form. Through our analysis, we establish optimal convergence in the energy norm and provide a rigorous proof of uniform convergence concerning the perturbation parameter in the lowest-order case.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. D. Adak and S. Natarajan. Virtual element method for semilinear sine-Gordon equation over polygonal mesh using product approximation technique. Math. Comput. Simulation, 172:224–243, 2020.
  2. Equivalent projectors for virtual element methods. Comput. Math. Appl., 66(3):376–391, 2013.
  3. The virtual element method for a 2D incompressible MHD system. Math. Comput. Simulation, 211:301–328, 2023.
  4. The virtual element method and its applications. Springer, Cham, 2022.
  5. On the virtual element method for topology optimization on polygonal meshes: a numerical study. Comput. Math. Appl., 74(5):1091–1109, 2017.
  6. The fully nonconforming virtual element method for biharmonic problems. Math. Models Methods Appl. Sci., 28(2):387–407, 2018.
  7. Basic principles of virtual element methods. Math. Models Meth. Appl. Sci., 23(1):199–214, 2013.
  8. The Hitchhiker’s guide to the virtual element method. Math. Models Meth. Appl. Sci., 24(8):1541–1573, 2014.
  9. The virtual element method for the 3D resistive magnetohydrodynamic model. Math. Models Methods Appl. Sci., 33(3):643–686, 2023.
  10. Virtual elements for the Navier-Stokes problem on polygonal meshes. SIAM J. Numer. Anal., 56(3):1210–1242, 2018.
  11. The Stokes complex for virtual elements with application to Navier–Stokes flows. J. Sci. Comput., 81:990–1018, 2019.
  12. S. C. Brenner and M. Neilan. A C0superscript𝐶0C^{0}italic_C start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT interior penalty method for a fourth order elliptic singular perturbation problem. SIAM J. Numer. Anal., 49:869–892, 2011.
  13. The Mathematical Theory of Finite Element Methods. Springer, New York, 2008.
  14. S. C. Brenner and L. Sung. C0superscript𝐶0C^{0}italic_C start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput., 22/23:83–118, 2005.
  15. Mimetic finite differences for elliptic problems. M2AN Math. Model. Numer. Anal., 43(2):277–295, 2009.
  16. F. Brezzi and L. D. Marini. Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Engrg., 253:455–462, 2013.
  17. E. Cáceres and G. N. Gatica. A mixed virtual element method for the pseudostress-velocity formulation of the Stokes problem. IMA J. Numer. Anal., 37:296–331, 2017.
  18. Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal., 37(3):1317–1354, 2016.
  19. L. Chen and J. Huang. Some error analysis on virtual element methods. Calcolo, 55(1):5, 2018.
  20. L. Chen and X. Huang. Nonconforming virtual element method for 2⁢m2𝑚2m2 italic_m-th order partial differential equations in Rnsuperscript𝑅𝑛R^{n}italic_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. Math. Comput., 89(324):1711–1744, 2020.
  21. Virtual element method (VEM)-based topology optimization: an integrated framework. Struct. Multidiscip. Optim., 62(3):1089–1114, 2020.
  22. C. Chinosi and L. D. Marini. Virtual element method for fourth order problems: L2superscript𝐿2L^{2}italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT-estimates. Comput. Math. Appl., 72(8):1959–1967, 2016.
  23. The nonconforming virtual element method. ESAIM Math. Model. Numer. Anal., 50(3):879–904, 2016.
  24. Virtual element method for an elliptic hemivariational inequality with applications to contact mechanics. J. Sci. Comput., 81(4036991):2388–2412, 2019.
  25. A nonconforming virtual element method for a fourth-order hemivariational inequality in kirchhoff plate problem. J. Sci. Comput., 90(3):89, 24 pp., 2022.
  26. G. N. Gatica and M. Munar. A mixed virtual element method for the Navier–Stokes equations. Math. Models Methods Appl. Sci., 28(14):2719–2762, 2018.
  27. J. Huang and Y. Yu. A medius error analysis for nonconforming virtual element methods for poisson and biharmonic equations. J. Comput. Appl. Math., 386:113229, 20 pp, 2021.
  28. The nonconforming virtual element method for a stationary Stokes hemivariational inequality with slip boundary condition. J. Sci. Comput., 85(3):Paper No. 56, 19, 2020.
  29. A nonconforming virtual element method for the Stokes problem on general meshes. Comput. Methods Appl. Mech. Engrg, 320:694–711, 2017.
  30. A robust nonconforming H2superscript𝐻2H^{2}italic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT-element. Math. Comput., 70(234):489–505, 2001.
  31. Local parameter selection in the C0superscript𝐶0C^{0}italic_C start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT interior penalty method for the biharmonic equation. arXiv:2209.05221v2, 2023.
  32. The interior penalty virtual element method for the fourth-order elliptic hemivariational inequality. Commun. Nonlinear Sci. Numer. Simul., 127(4644807):Paper No. 107547, 17, 2023.
  33. B. Semper. Conforming finite element approximations for a fourth-order singular perturbation problem. SIAM J. Numer. Anal., 29(4):1043–1058, 1992.
  34. Polymesher: a general-purpose mesh generator for polygonal elements written in matlab. Struct. Multidiscip. Optim., 45(3):309–328, 2012.
  35. F. Wang and H. Wei. Virtual element method for simplified friction problem. Appl. Math. Lett., 85(3820290):125–131, 2018.
  36. The virtual element method for general elliptic hemivariational inequalities. J. Comput. Appl. Math., 389(4194398):Paper No. 113330, 19, 2021.
  37. F. Wang and J. Zhao. Conforming and nonconforming virtual element methods for a Kirchhoff plate contact problem. IMA J. Numer. Anal., 41(2):1496–1521, 2021.
  38. M. Wang. On the necessity and sufficiency of the patch test for convergence of nonconforming finite elements. SIAM J. Numer. Anal., 39(2):363–384, 2001.
  39. Modified Morley element method for a fourth order elliptic singular perturbation problem. J. Comput. Math., 24(2):113–120, 2006.
  40. W. Xiao and M. Ling. Virtual element method for a history-dependent variational-hemivariational inequality in contact problems. J. Sci. Comput., 96(3):Paper No. 82, 21, 2023.
  41. Adaptive multi-material topology optimization with hyperelastic materials under large deformations: a virtual element approach. Comput. Methods Appl. Mech. Engrg., 370(4129484):112976, 34, 2020.
  42. The interior penalty virtual element method for the biharmonic problem. Math. Comp., 92(342):1543–1574, 2023.
  43. The nonconforming virtual element method for fourth-order singular perturbation problem. Adv. Comput. Math., 46(2):Paper No. 19, 23, 2020.
  44. The Morley-type virtual element for plate bending problems. J. Sci. Comput., 76(1):610–629, 2018.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.