Papers
Topics
Authors
Recent
2000 character limit reached

Lowest-degree robust finite element scheme for a fourth-order elliptic singular perturbation problem on rectangular grids

Published 29 Jun 2020 in math.NA and cs.NA | (2006.15804v1)

Abstract: In this paper, a piecewise quadratic nonconforming finite element method on rectangular grids for a fourth-order elliptic singular perturbation problem is presented. This proposed method is robustly convergent with respect to the perturbation parameter. Numerical results are presented to verify the theoretical findings. The new method uses piecewise quadratic polynomials, and is of the lowest degree possible. Optimal order approximation property of the finite element space is proved by means of a locally-averaged interpolation operator newly constructed. This interpolator, however, is not a projection. Indeed, we establish a general theory and show that no locally defined interpolation associated with the locally supported basis functions can be projective for the finite element space in use. Particularly, the general theory gives an answer to a long-standing open problem presented in [Demko, J. Approx. Theory, $\bf{43}$(2):151--156, 1985].

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.