Interpolation by integrals on balls (2312.10537v1)
Abstract: In this work we blend interpolation theory with numerical integration, constructing an interpolator based on integrals over $n$-dimensional balls. We show that, under hypotheses on the radius of the $n$-balls, the problem can be treated as an interpolation problem both on a collection of $(n-1)$-spheres $ S{n-1} $ and multivariate point sets, for which a wide literature is available. With the aim of exact quadrature and cubature formulae, we offer a neat strategy for the exact computation of the Vandermonde matrix of the problem and propose a meaningful Lebesgue constant. Problematic situations are evidenced and a charming aspect is enlightened: the majority of the theoretical results only deal with the centre of the domains of integration and are not really sensitive to their radius. We flank our theoretical results by a large amount of comprehensive numerical examples.
- A. Alonso Rodríguez, L. Bruni Bruno and F. Rapetti “Towards nonuniform distributions of unisolvent weights for high-order Whitney edge elements” In Calcolo 59.4, 2022, pp. Paper No. 37\bibrangessep29
- A. Alonso Rodríguez, L. Bruni Bruno and F. Rapetti “Whitney edge elements and the Runge phenomenon” In J. Comput. Appl. Math. 427, 2023, pp. 115117\bibrangessep9
- A. Alonso Rodríguez and F. Rapetti “On a generalization of the Lebesgue’s constant” In J. Comput. Phys. 428, 2021, pp. Paper No. 109964\bibrangessep4
- Ana Alonso Rodríguez, Ludovico Bruni Bruno and Francesca Rapetti “Flexible weights for high order face based finite element interpolation” In Spectral and high order methods for partial differential equations ICOSAHOM 2020+1 137, Lect. Notes Comput. Sci. Eng. Springer, Cham, 2023, pp. 117–128
- “Bounding the Lebesgue constant for a barycentric rational trigonometric interpolant at periodic well-spaced nodes” In J. Comput. Appl. Math. 398, 2021, pp. 113664\bibrangessep11
- B. Bojanov “Interpolation and integration based on averaged values” In Approximation and probability 72, Banach Center Publ. Polish Acad. Sci. Inst. Math., Warsaw, 2006, pp. 25–47
- L. Bos “On certain configurations of points in 𝐑nsuperscript𝐑𝑛{\bf R}^{n}bold_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT which are unisolvent for polynomial interpolation” In J. Approx. Theory 64.3, 1991, pp. 271–280
- M. Briani, A. Sommariva and M. Vianello “Computing Fekete and Lebesgue points: simplex, square, disk” In J. Comput. Appl. Math. 236.9, 2012, pp. 2477–2486
- L. Bruni Bruno “Weights as degrees of freedoom for high order Whitney finite elements” Available at: https://theses.hal.science/tel-04067201/, 2022
- L. Bruni Bruno and W. Erb “Polynomial Interpolation of Function Averages on Interval Segments”, 2023 arXiv:2309.00328 [math.NA]
- L. Bruni Bruno and E. Zampa “Unisolvent and minimal physical degrees of freedom for the second family of polynomial differential forms” In ESAIM Math. Model. Numer. Anal. 56.6, 2022, pp. 2239–2253
- M.D. Buhmann “Radial Basis Functions: Theory and Implementations”, Cambridge Monographs on Applied and Computational Mathematics Cambridge University Press, 2003
- M.D. Buhmann, F. Dai and Y. Niu “Discretization of integrals on compact metric measure spaces” In Adv. Math. 381, 2021, pp. 107602\bibrangessep32
- “On high order finite element spaces of differential forms” In Math. Comp. 85.298, 2016, pp. 517–548
- “On lattices admitting unique Lagrange interpolations” In SIAM J. Numer. Anal. 14.4, 1977, pp. 735–743
- “A survey of known and new cubature formulas for the unit disk” In Korean J. Comput. Appl. Math. 7.3, 2000, pp. 477–485
- S. De Marchi, G. Elefante and F. Marchetti “On (β,γ)𝛽𝛾(\beta,\gamma)( italic_β , italic_γ )-Chebyshev functions and points of the interval” In J. Approx. Theory 271, 2021, pp. 105634\bibrangessep17
- “On Lagrange and Hermite interpolation in 𝐑ksuperscript𝐑𝑘{\bf R}^{k}bold_R start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT” In Numer. Math. 39.1, 1982, pp. 1–14
- M. Gentile, A. Sommariva and M. Vianello “Polynomial interpolation and cubature over polygons” In J. Comput. Appl. Math. 235.17, 2011, pp. 5232–5239
- J. Harrison “Continuity of the integral as a function of the domain” Dedicated to the memory of Fred Almgren In J. Geom. Anal. 8.5, 1998, pp. 769–795
- J.S. Hesthaven “From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex” In SIAM J. Numer. Anal. 35.2, 1998, pp. 655–676
- B.A. Ibrahimoglu “Lebesgue functions and Lebesgue constants in polynomial interpolation” In J. Inequal. Appl., 2016, pp. 93\bibrangessep15
- “On the computation of sets of points with low Lebesgue constant on the unit disk” In J. Comput. Appl. Math. 345, 2019, pp. 388–404
- H. Niederreiter “Random Number Generation and Quasi-Monte Carlo Methods” Society for IndustrialApplied Mathematics, 1992
- V.M. Phung “Hermite interpolation on the unit sphere and limits of Lagrange projectors” In IMA J. Numer. Anal. 41.2, 2021, pp. 1441–1464
- V.M. Phung “Polynomial interpolation in ℝ2superscriptℝ2\mathbb{R}^{2}blackboard_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and on the unit sphere in ℝ3superscriptℝ3\mathbb{R}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT” In Acta Math. Hungar. 153.2, 2017, pp. 289–317
- F. Rapetti “High order edge elements on simplicial meshes” In M2AN Math. Model. Numer. Anal. 41.6, 2007, pp. 1001–1020
- M.J. Roth “Nodal configurations and Voronoi tessellations for triangular spectral elements”, 2005
- B. Sündermann “On projection constants of polynomial spaces on the unit ball in several variables” In Math. Z. 188.1, 1984, pp. 111–117
- N. Takaki, G.W. Forbes and J.P. Rolland “Schemes for cubature over the unit disk found via numerical optimization” In J. Comput. Appl. Math. 407, 2022, pp. 114076\bibrangessep19
- T. Warburton “An explicit construction of interpolation nodes on the simplex” In J. Engrg. Math. 56.3, 2006, pp. 247–262
- Y. Xu “Polynomial interpolation on the unit sphere” In SIAM J. Numer. Anal. 41.2, 2003, pp. 751–766
- Y. Xu “Polynomial interpolation on the unit sphere and on the unit ball” Approximation and applications In Adv. Comput. Math. 20.1-3, 2004, pp. 247–260