Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High-Order Numerical Integration on Domains Bounded by Intersecting Level Sets (2308.10698v1)

Published 21 Aug 2023 in math.NA and cs.NA

Abstract: We present a high-order method that provides numerical integration on volumes, surfaces, and lines defined implicitly by two smooth intersecting level sets. To approximate the integrals, the method maps quadrature rules defined on hypercubes to the curved domains of the integrals. This enables the numerical integration of a wide range of integrands since integration on hypercubes is a well known problem. The mappings are constructed by treating the isocontours of the level sets as graphs of height functions. Numerical experiments with smooth integrands indicate a high-order of convergence for transformed Gauss quadrature rules on domains defined by polynomial, rational, and trigonometric level sets. We show that the approach we have used can be combined readily with adaptive quadrature methods. Moreover, we apply the approach to numerically integrate on difficult geometries without requiring a low-order fallback method.

Citations (1)

Summary

We haven't generated a summary for this paper yet.