Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An algorithm for estimating volumes and other integrals in $n$ dimensions (2007.06808v2)

Published 14 Jul 2020 in math.NA, cs.NA, and physics.data-an

Abstract: The computational cost in evaluation of the volume of a body using numerical integration grows exponentially with dimension of the space $n$. The most generally applicable algorithms for estimating $n$-volumes and integrals are based on Markov Chain Monte Carlo (MCMC) methods, and they are suited for convex domains. We analyze a less known alternate method used for estimating $n$-dimensional volumes, that is agnostic to the convexity and roughness of the body. It results due to the possible decomposition of an arbitrary $n$-volume into an integral of statistically weighted volumes of $n$-spheres. We establish its dimensional scaling, and extend it for evaluation of arbitrary integrals over non-convex domains. Our results also show that this method is significantly more efficient than the MCMC approach even when restricted to convex domains, for $n$ $\sim <$ 100. An importance sampling may extend this advantage to larger dimensions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.