Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Baryogenesis in $R^2$-Higgs Inflation: the Gravitational Connection (2312.10414v2)

Published 16 Dec 2023 in astro-ph.CO, gr-qc, and hep-ph

Abstract: $R2$-Higgs inflation stands out as one of the best-fit models of Planck data. Using a covariant formalism for the inflationary dynamics and the production of helical gauge fields, we show that the observed baryon asymmetry of the Universe (BAU) can be obtained when this model is supplemented by a dimension-six CP-violating term $\sim (R/\Lambda2)\, B_{\mu\nu} \widetilde{B}{\mu\nu}$ in the hypercharge sector. At linear order, values of $\Lambda\simeq 2.5\times10{-5}\ M_{\rm P}$ produce, in the $R2$-like regime, sufficient helical hypermagnetic fields to create the observed matter-antimatter asymmetry during the electroweak crossover. However, the Schwinger effect of fermion pair production can play a critical role in this context, and that scale is significantly lowered when the backreaction of the fermion fields on the gauge field production is included. In all cases, the helical field configurations can remain robust against washout after the end of inflation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (66)
  1. A. A. Starobinsky, Phys. Lett. B 91, 99 (1980).
  2. K. Sato, Mon. Not. Roy. Astron. Soc. 195, 467 (1981).
  3. A. H. Guth, Phys. Rev. D 23, 347 (1981).
  4. Y. Akrami et al. (Planck), Astron. Astrophys. 641, A10 (2020), arXiv:1807.06211 [astro-ph.CO] .
  5. A. A. Starobinsky, Sov. Astron. Lett. 9, 302 (1983).
  6. A. Vilenkin, Phys. Rev. D 32, 2511 (1985).
  7. K.-i. Maeda, Phys. Rev. D 37, 858 (1988).
  8. G. Aad et al. (ATLAS), Phys. Lett. B 716, 1 (2012), arXiv:1207.7214 [hep-ex] .
  9. S. Chatrchyan et al. (CMS), Phys. Lett. B 716, 30 (2012), arXiv:1207.7235 [hep-ex] .
  10. F. L. Bezrukov and M. Shaposhnikov, Phys. Lett. B 659, 703 (2008), arXiv:0710.3755 [hep-th] .
  11. F. Bezrukov, Class. Quant. Grav. 30, 214001 (2013), arXiv:1307.0708 [hep-ph] .
  12. B. L. Spokoiny, Phys. Lett. B 147, 39 (1984).
  13. T. Futamase and K.-i. Maeda, Phys. Rev. D 39, 399 (1989).
  14. R. Fakir and W. G. Unruh, Phys. Rev. D 41, 1783 (1990).
  15. D. I. Kaiser, Phys. Rev. D 52, 4295 (1995), arXiv:astro-ph/9408044 .
  16. J. L. Cervantes-Cota and H. Dehnen, Nucl. Phys. B 442, 391 (1995), arXiv:astro-ph/9505069 .
  17. E. Komatsu and T. Futamase, Phys. Rev. D 59, 064029 (1999), arXiv:astro-ph/9901127 .
  18. J. L. F. Barbon and J. R. Espinosa, Phys. Rev. D 79, 081302 (2009), arXiv:0903.0355 [hep-ph] .
  19. M. P. Hertzberg, JHEP 11, 023 (2010), arXiv:1002.2995 [hep-ph] .
  20. E. I. Sfakianakis and J. van de Vis, Phys. Rev. D 99, 083519 (2019), arXiv:1810.01304 [hep-ph] .
  21. Y. Ema, Phys. Lett. B 770, 403 (2017), arXiv:1701.07665 [hep-ph] .
  22. A. Salvio and A. Mazumdar, Phys. Lett. B 750, 194 (2015), arXiv:1506.07520 [hep-ph] .
  23. D. Gorbunov and A. Tokareva, Phys. Lett. B 788, 37 (2019), arXiv:1807.02392 [hep-ph] .
  24. A. Gundhi and C. F. Steinwachs, Nucl. Phys. B 954, 114989 (2020), arXiv:1810.10546 [hep-th] .
  25. F. Bezrukov and C. Shepherd, JCAP 12, 028 (2020), arXiv:2007.10978 [hep-ph] .
  26. M. He, JCAP 05, 021 (2021), arXiv:2010.11717 [hep-ph] .
  27. G. R. Farrar and M. E. Shaposhnikov, Phys. Rev. Lett. 70, 2833 (1993), [Erratum: Phys.Rev.Lett. 71, 210 (1993)], arXiv:hep-ph/9305274 .
  28. G. R. Farrar and M. E. Shaposhnikov, Phys. Rev. D 50, 774 (1994), arXiv:hep-ph/9305275 .
  29. A. D. Sakharov, Pisma Zh. Eksp. Teor. Fiz. 5, 32 (1967).
  30. M. E. Shaposhnikov, Nucl. Phys. B 287, 757 (1987).
  31. K. Kamada and A. J. Long, Phys. Rev. D 94, 063501 (2016a), arXiv:1606.08891 [astro-ph.CO] .
  32. M. M. Anber and L. Sorbo, JCAP 10, 018 (2006), arXiv:astro-ph/0606534 .
  33. K. Bamba, Phys. Rev. D 74, 123504 (2006), arXiv:hep-ph/0611152 .
  34. M. M. Anber and L. Sorbo, Phys. Rev. D 81, 043534 (2010), arXiv:0908.4089 [hep-th] .
  35. M. M. Anber and E. Sabancilar, Phys. Rev. D 92, 101501 (2015), arXiv:1507.00744 [hep-th] .
  36. Y. Cado and E. Sabancilar, JCAP 04, 047 (2017), arXiv:1611.02293 [hep-ph] .
  37. K. Kamada and A. J. Long, Phys. Rev. D 94, 123509 (2016b), arXiv:1610.03074 [hep-ph] .
  38. Y. Cado and M. Quirós, Phys. Rev. D 106, 055018 (2022a), arXiv:2201.06422 [hep-ph] .
  39. Y. Cado and M. Quirós, Phys. Rev. D 106, 123527 (2022b), arXiv:2208.10977 [hep-ph] .
  40. O. Savchenko and Y. Shtanov, JCAP 10, 040 (2018), arXiv:1808.06193 [astro-ph.CO] .
  41. K. Subramanian, Rept. Prog. Phys. 79, 076901 (2016), arXiv:1504.02311 [astro-ph.CO] .
  42. R. Durrer and A. Neronov, Astron. Astrophys. Rev. 21, 62 (2013), arXiv:1303.7121 [astro-ph.CO] .
  43. V. Domcke and K. Mukaida, JCAP 11, 020 (2018), arXiv:1806.08769 [hep-ph] .
  44. H. Kitamoto and M. Yamada, JHEP 06, 103 (2022), arXiv:2109.14782 [hep-ph] .
  45. T. D. Cohen and D. A. McGady, Phys. Rev. D 78, 036008 (2008), arXiv:0807.1117 [hep-ph] .
  46. Y. Cado and M. Quirós, Phys. Rev. D 108, 023508 (2023), arXiv:2303.12932 [hep-ph] .
  47. J.-O. Gong and T. Tanaka, JCAP 03, 015 (2011), [Erratum: JCAP 02, E01 (2012)], arXiv:1101.4809 [astro-ph.CO] .
  48. M. Sasaki and E. D. Stewart, Prog. Theor. Phys. 95, 71 (1996), arXiv:astro-ph/9507001 .
  49. S. Groot Nibbelink and B. J. W. van Tent,   (2000), arXiv:hep-ph/0011325 .
  50. S. Groot Nibbelink and B. J. W. van Tent, Class. Quant. Grav. 19, 613 (2002), arXiv:hep-ph/0107272 .
  51. D. Seery and J. E. Lidsey, JCAP 09, 011 (2005), arXiv:astro-ph/0506056 .
  52. C. M. Peterson and M. Tegmark, Phys. Rev. D 83, 023522 (2011a), arXiv:1005.4056 [astro-ph.CO] .
  53. C. M. Peterson and M. Tegmark, Phys. Rev. D 87, 103507 (2013), arXiv:1111.0927 [astro-ph.CO] .
  54. H. Kodama and M. Sasaki, Prog. Theor. Phys. Suppl. 78, 1 (1984).
  55. K. A. Malik and D. Wands, Phys. Rept. 475, 1 (2009), arXiv:0809.4944 [astro-ph] .
  56. M. Sasaki, Prog. Theor. Phys. 76, 1036 (1986).
  57. V. F. Mukhanov, Sov. Phys. JETP 67, 1297 (1988).
  58. R. Easther and J. T. Giblin, Phys. Rev. D 72, 103505 (2005), arXiv:astro-ph/0505033 .
  59. D. Langlois and S. Renaux-Petel, JCAP 04, 017 (2008), arXiv:0801.1085 [hep-th] .
  60. C. M. Peterson and M. Tegmark, Phys. Rev. D 84, 023520 (2011b), arXiv:1011.6675 [astro-ph.CO] .
  61. K. D. Lozanov and M. A. Amin, JCAP 06, 032 (2016), arXiv:1603.05663 [hep-ph] .
  62. J. R. C. Cuissa and D. G. Figueroa, JCAP 06, 002 (2019), arXiv:1812.03132 [astro-ph.CO] .
  63. M. D’Onofrio and K. Rummukainen, Phys. Rev. D 93, 025003 (2016), arXiv:1508.07161 [hep-ph] .
  64. M. Joyce and M. E. Shaposhnikov, Phys. Rev. Lett. 79, 1193 (1997), arXiv:astro-ph/9703005 .
  65. N. Barnaby and M. Peloso, Phys. Rev. Lett. 106, 181301 (2011), arXiv:1011.1500 [hep-ph] .
  66. P. Collas and D. Klein, The Dirac Equation in Curved Spacetime: A Guide for Calculations, SpringerBriefs in Physics (Springer, 2019) arXiv:1809.02764 [gr-qc] .
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: