Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

The Physics-Informed Neural Network Gravity Model: Generation III (2312.10257v3)

Published 15 Dec 2023 in cs.LG and physics.geo-ph

Abstract: Scientific machine learning and the advent of the Physics-Informed Neural Network (PINN) have shown high potential in their ability to solve complex differential equations. One example is the use of PINNs to solve the gravity field modeling problem -- learning convenient representations of the gravitational potential from position and acceleration data. These PINN gravity models, or PINN-GMs, have demonstrated advantages in model compactness, robustness to noise, and sample efficiency when compared to popular alternatives; however, further investigation has revealed various failure modes for these and other machine learning gravity models which this manuscript aims to address. Specifically, this paper introduces the third generation Physics-Informed Neural Network Gravity Model (PINN-GM-III) which includes design changes that solve the problems of feature divergence, bias towards low-altitude samples, numerical instability, and extrapolation error. Six evaluation metrics are proposed to expose these past pitfalls and illustrate the PINN-GM-III's robustness to them. This study concludes by evaluating the PINN-GM-III modeling accuracy on a heterogeneous density asteroid, and comparing its performance to other analytic and machine learning gravity models.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: