Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 131 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Effects of phase transition in hybrid stars from quark-meson coupling hadronic matter to deconfined quark matter (2312.08758v2)

Published 14 Dec 2023 in nucl-th

Abstract: Different types of phase transition from hadron to quark at high density near zero temperature may occur in the inner core of hybrid stars. We investigate the impacts of phase transition types and quark models on properties of hybrid star and quark cores. The quark-meson coupling (QMC) model is used to describe hadronic matter, and the MIT bag model as well as the Nambu-Jona-Lasinio (NJL) model are employed to describe quark matter for comparison. From the mass-radius curves obtained by using equations of state (EOS), we find that EOSs of hadron matter have a decisive influence on the maximum mass of a hybrid star in the first-order phase transition case, while quark matter EOSs have more impacts on results in the crossover transition case. It is also found in the present work that the thermodynamic correction arising from an interpolation scheme considerably stiffens the EOSs. Therefore the crossover type phase transition generally leads to hybrid stars with higher masses. In particular, by using the QMC model and the NJL model to construct crossover EOSs with thermodynamic correction, we discover that the maximum masses of hybrid stars can meet the recent observational constraint on mass from PSR J0952-0607, i.e., $2.35\pm0.17M_\odot$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. C.-Q. Ma and C.-Y. Gao, Quark deconfinement in neutron star cores, Eur. Phys. J. A 34, 153 (2007).
  2. P. K. Panda, D. P. Menezes, and C. Providência, Hybrid stars in the quark-meson coupling model with superconducting quark matter, Phys. Rev. C 69, 025207 (2004).
  3. M. Gyulassy and L. McLerran, New forms of QCD matter discovered at RHIC, Nucl. Phys. A 750, 30 (2005).
  4. K. Masuda, T. Hatsuda, and T. Takatsuka, Hadron–quark crossover and massive hybrid stars, Prog. Theor. Exp. Phys. 2013, 073D01 (2013a).
  5. B.-L. Li, Y. Yan, and J.-L. Ping, Hadron–Quark crossover and hybrid stars with quark core, J. Phys. G Nucl. Part. Phys. 49, 045201 (2022a).
  6. F. Ma, W. Guo, and C. Wu, Kaon meson condensate in neutron star matter including hyperons, Phys. Rev. C 105, 015807 (2022).
  7. S. Yin, J. Zang, and R.-K. Su, Slowly rotating neutron stars and hadronic stars in the chiral SU(3) quark mean-field model, Eur. Phys. J. A 43, 295 (2010).
  8. R. Karimi and H. Moshfegh, Hybrid stars within the framework of the Sigma-Omega-Rho model combined with the MIT and NJL models, Nucl. Phys. A 1037, 122684 (2023).
  9. A. Sorensen and V. Koch, Phase transitions and critical behavior in hadronic transport with a relativistic density functional equation of state, Phys. Rev. C 104, 034904 (2021).
  10. K. Fukushima and T. Hatsuda, The phase diagram of dense QCD, Rep. Prog. Phys. 74, 014001 (2011).
  11. J. J. R. M. Van Heugten, S. Yin, and H. T. C. Stoof, Fermi-liquid theory of imbalanced quark matter, Phys. Rev. D 85, 125030 (2012).
  12. D. J. Gross and F. Wilczek, Ultraviolet behavior of non-Abelian gauge theories, Phys. Rev. Lett. 30, 1343 (1973).
  13. J. C. Collins and M. J. Perry, Superdense matter: Neutrons or asymptotically free quarks?, Phys. Rev. Lett. 34, 1353 (1975).
  14. R. Somasundaram, I. Tews, and J. Margueron, Investigating signatures of phase transitions in neutron-star cores, Phys. Rev. C 107, 025801 (2023).
  15. A. Sedrakian, J. J. Li, and F. Weber, Heavy baryons in compact stars, Prog. Part. Nucl. Phys. 131, 104041 (2023).
  16. D. L. Whittenbury, H. H. Matevosyan, and A. W. Thomas, Hybrid stars using the quark-meson coupling and proper-time Nambu–Jona-Lasinio models, Phys. Rev. C 93, 035807 (2016).
  17. X. Wu, A. Ohnishi, and H. Shen, Effects of quark-matter symmetry energy on hadron-quark coexistence in neutron-star matter, Phys. Rev. C 98, 065801 (2018).
  18. M. Chang-Qun and G. Chun-Yuan, Phase transitions in neutron stars within modified quark-meson coupling model, Commun. Theor. Phys. 50, 180 (2008).
  19. P. Guichon, A possible quark mechanism for the saturation of nuclear matter, Phys. Lett. B 200, 235 (1988).
  20. Y. Nambu and G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. II, Phys. Rev. 124, 246 (1961).
  21. T. Hatsuda and T. Kunihiro, QCD phenomenology based on a chiral effective Lagrangian, Phys. Rep. 247, 221 (1994).
  22. M. Buballa, NJL-model analysis of dense quark matter, Phys. Rep. 407, 205 (2005).
  23. C. Drischler, J. Holt, and C. Wellenhofer, Chiral effective field theory and the high-density nuclear equation of state, Annu. Rev. Nucl. Part. Sci. 71, 403 (2021).
  24. C. H. Lenzi, G. Lugones, and C. Vasquez, Hybrid stars with reactive interfaces: Analysis within the Nambu–Jona-Lasinio model, Phys. Rev. D 107, 083025 (2023).
  25. G. B. Alaverdyan, Quark matter in the NJL model with a vector interaction and the structure of hybrid stars, Astrophysics 65, 278 (2022).
  26. F. Yang and H. Shen, Influence of the hadronic equation of state on the hadron-quark phase transition in neutron stars, Phys. Rev. C 77, 025801 (2008).
  27. H. Liu, X.-M. Zhang, and P.-C. Chu, Properties of quark-matter cores in massive hybrid stars, Phys. Rev. D 107, 094032 (2023).
  28. K. Masuda, T. Hatsuda, and T. Takatsuka, Hadron-quark crossover and massive hybrid stars with strangeness, Astrophys. J. 764, 12 (2013b).
  29. J. Antoniadis et al., A massive pulsar in a compact relativistic binary, Science 340, 1233232 (2013).
  30. F. Ma, C. Wu, and W. Guo, Kaon-meson condensation and ΔΔ\Deltaroman_Δ resonance in hyperonic stellar matter within a relativistic mean-field model, Phys. Rev. C 107, 045804 (2023).
  31. N. Glendenning and S. Moszkowski, Reconciliation of neutron-star masses and binding of the ΛΛ\Lambdaroman_Λ in hypernuclei, Phys. Rev. Lett. 67, 2414 (1991).
  32. F. Weber, Strange quark matter and compact stars, Prog. Part. Nucl. Phys. 54, 193 (2005).
  33. N. Glendenning, Phase transitions and crystalline structures in neutron star cores, Phys. Rep. 342, 393 (2001).
  34. V. Bernard, R. Jaffe, and U.-G. Meiβ𝛽\betaitalic_βner, Flavor mixing via dynamical chiral symmetry breaking, Phys. Lett. B 198, 92 (1987).
  35. D. Ebert and H. Reinhardt, Effective Chiral Hadron Lagrangian with anomalies and Skyrme terms from quark flavour dynamics, Nucl. Phys. B 271, 188 (1986).
  36. G. ’T Hooft, Computation of the quantum effects due to a four-dimensional pseudoparticle, Phys. Rev. D 14, 3432 (1976).
  37. N. Bratovic, T. Hatsuda, and W. Weise, Role of vector interaction and axial anomaly in the PNJL modeling of the QCD phase diagram, Phys. Lett. B 719, 131 (2013).
  38. P. Rehberg, S. P. Klevansky, and J. Hüfner, Hadronization in the SU(3) Nambu–Jona-Lasinio model, Phys. Rev. C 53, 410 (1996).
  39. K. Fukushima, Chiral effective model with the Polyakov loop, Phys. Lett. B 591, 277 (2004).
  40. B.-L. Li, Y. Yan, and J.-L. Ping, Tidal deformabilities and radii of strange quark stars, Phys. Rev. D 104, 043002 (2021a).
  41. B.-L. Li, Y. Yan, and J.-L. Ping, Strange quark mass dependence of strange quark star properties, Eur. Phys. J. C 81, 921 (2021b).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.